Hi all,

I'm interested in a global optimisation problem with a non-differentiable
objective function with about 25 parameters. I've set the options as:

opt.algorithm=NLOPT_G_MLSL_LDS;
opt.lower_bounds=lb;
opt.upper_bounds=ub;
opt.verbose=1;
opt.population=10;
opt.maxeval=1000;

opt.local_optimizer.algorithm=NLOPT_LN_NELDERMEAD;
opt.local_optimizer.xtol_rel=1e-3;
opt.local_optimizer.ftol_rel=1e-3;
opt.local_optimizer.ftol_abs=1e-3;

opt.min_objective=obj_func;


In this setup, I'm wondering if the opt.population=10 means that the total
number of sample points from which the global optimization will start is 10, or
if every iteration of the Nelder-Mead method will sample 10 new points? If it's
the second, can we figure out, after the optimization is done, how many points
were sampled?

Finally, I'd appreciate recommendations on the local optimization algorithm I
should be using for this problem.

Thanks a ton!

Best,
Nikhil


_______________________________________________
NLopt-discuss mailing list
[email protected]
http://ab-initio.mit.edu/cgi-bin/mailman/listinfo/nlopt-discuss

Reply via email to