Copilot commented on code in PR #1319: URL: https://github.com/apache/dubbo-admin/pull/1319#discussion_r2314112281
########## ai/internal/agent/flow.go: ########## @@ -0,0 +1,179 @@ +package agent + +import ( + "context" + + "dubbo-admin-ai/internal/config" + "dubbo-admin-ai/internal/manager" + "dubbo-admin-ai/internal/schema" + "dubbo-admin-ai/internal/tools" + "errors" + "fmt" + "log" + "os" + + "github.com/firebase/genkit/go/core/logger" + + "github.com/firebase/genkit/go/ai" + "github.com/firebase/genkit/go/core" + "github.com/firebase/genkit/go/genkit" +) + +// 公开的 Flow 变量,以便在编排器中调用 +var ( + ReActFlow *core.Flow[schema.ReActIn, schema.ReActOut, struct{}] + ThinkingFlow *core.Flow[schema.ThinkIn, *schema.ThinkOut, struct{}] + ActFlow *core.Flow[*schema.ActIn, schema.ActOut, struct{}] + + ThinkPrompt *ai.Prompt +) + +var g *genkit.Genkit + +// The order of initialization cannot change +func InitAgent() (err error) { + if err = manager.LoadEnvVars(); err != nil { + return err + } + + manager.InitLogger() + + if g, err = manager.GetGlobalGenkit(); err != nil { + return err + } + + tools.RegisterAllMockTools(g) + + if err = InitFlows(g); err != nil { + return err + } + + return nil +} + +func InitFlows(registry *genkit.Genkit) error { + if registry == nil { + return fmt.Errorf("registry is nil") + } + g = registry + + data, err := os.ReadFile(config.PROMPT_DIR_PATH + "/agentSystem.prompt") + if err != nil { + return fmt.Errorf("failed to read agentSystem prompt: %w", err) + } + systemPromptText := string(data) + + mockTools, err := tools.AllMockToolRef() + if err != nil { + log.Fatalf("failed to get mock mock_tools: %v", err) + } + ThinkPrompt, err = genkit.DefinePrompt(g, "agentThinking", + ai.WithSystem(systemPromptText), + ai.WithInputType(schema.ThinkIn{}), + ai.WithOutputType(schema.ThinkOut{}), + ai.WithPrompt("{{userInput}}"), + ai.WithTools(mockTools...), + ) + + if err != nil { + return fmt.Errorf("failed to define agentThink prompt: %w", err) + } + + ReActFlow = genkit.DefineFlow(g, "reAct", reAct) + ThinkingFlow = genkit.DefineFlow(g, "thinking", thinking) + ActFlow = genkit.DefineFlow(g, "act", act) + + return nil +} + +// Flow 的核心函数实现 `fn` (不对外导出) +// ---------------------------------------------------------------------------- +// 1. agentOrchestrator: 总指挥/编排器的核心逻辑 +// ---------------------------------------------------------------------------- +func reAct(ctx context.Context, reActInput schema.ReActIn) (reActOut schema.ReActOut, err error) { + //TODO: 输入数据意图解析 + + thinkingInput := reActInput + // 主协调循环 (Reconciliation Loop) + for i := 0; i < config.MAX_REACT_ITERATIONS; i++ { + + // a. 调用 thinkingFlow + thinkingResp, err := ThinkingFlow.Run(ctx, thinkingInput) + if err != nil { + manager.GetLogger().Error("failed to run thinking flow", "error", err) + return "", err + } + if thinkingResp == nil { + manager.GetLogger().Error("expected non-nil response") + return "", errors.New("expected non-nil response") + } + + for _, r := range thinkingResp.ToolRequests { + manager.GetLogger().Info(r.String()) + } + + reActOut = thinkingResp.String() + + // b. 检查是否有最终答案 + if thinkingResp.IsStop() { + break + } + + // c. 调用 actFlow + actOutArray, err := ActFlow.Run(ctx, thinkingResp) + if err != nil { + logger.FromContext(ctx).Error("failed to run act flow", "error", err) + return "", err + } + + // TODO: 这里将来会集成SessionMemory,暂时简化处理 + _ = actOutArray // 占位符,避免未使用变量错误 + } + + return reActOut, nil +} + +// ---------------------------------------------------------------------------- +// 2. thinking: 大脑/思考者的核心逻辑 +// ---------------------------------------------------------------------------- +func thinking(ctx context.Context, input schema.ThinkIn) (*schema.ThinkOut, error) { + resp, err := ThinkPrompt.Execute(ctx, + ai.WithInput(input), + ) + + if err != nil { + return nil, fmt.Errorf("failed to execute agentThink prompt: %w", err) + } + + // 解析输出 + var response *schema.ThinkOut = nil Review Comment: [nitpick] Explicit initialization to nil is unnecessary for pointer types. Simply declare as `var response *schema.ThinkOut` for cleaner code. ```suggestion var response *schema.ThinkOut ``` ########## ai/internal/tools/mock_tools.go: ########## @@ -0,0 +1,623 @@ +package tools + +import ( + "fmt" + "log" + + "github.com/firebase/genkit/go/ai" + "github.com/firebase/genkit/go/genkit" +) + +// ================================================ +// Prometheus Query Service Latency Tool +// ================================================ +type ToolOutput interface { + Tool() string +} + +type PrometheusServiceLatencyInput struct { + ServiceName string `json:"serviceName" jsonschema:"required,description=The name of the service to query"` + TimeRangeMinutes int `json:"timeRangeMinutes" jsonschema:"required,description=Time range in minutes"` + Quantile float64 `json:"quantile" jsonschema:"required,description=Quantile to query (e.g., 0.99 or 0.95)"` +} + +type PrometheusServiceLatencyOutput struct { + ToolName string `json:"toolName"` + Quantile float64 `json:"quantile"` + ValueMillis int `json:"valueMillis"` + Summary string `json:"summary"` +} + +func (o PrometheusServiceLatencyOutput) Tool() string { + return o.ToolName +} + +func prometheusQueryServiceLatency(ctx *ai.ToolContext, input PrometheusServiceLatencyInput) (PrometheusServiceLatencyOutput, error) { + log.Printf("Tool 'prometheus_query_service_latency' called for service: %s", input.ServiceName) + + // Mock data based on the example in prompt + valueMillis := 3500 + if input.ServiceName != "order-service" { + valueMillis = 850 + } + + return PrometheusServiceLatencyOutput{ + ToolName: "prometheus_query_service_latency", + Quantile: input.Quantile, + ValueMillis: valueMillis, + Summary: fmt.Sprintf("服务 %s 在过去%d分钟内的 P%.0f 延迟为 %dms", input.ServiceName, input.TimeRangeMinutes, input.Quantile*100, valueMillis), + }, nil +} + +// ================================================ +// Prometheus Query Service Traffic Tool +// ================================================ + +type PrometheusServiceTrafficInput struct { + ServiceName string `json:"serviceName" jsonschema:"required,description=The name of the service to query"` + TimeRangeMinutes int `json:"timeRangeMinutes" jsonschema:"required,description=Time range in minutes"` +} + +type PrometheusServiceTrafficOutput struct { + ToolName string `json:"toolName"` + RequestRateQPS float64 `json:"requestRateQPS"` + ErrorRatePercentage float64 `json:"errorRatePercentage"` + Summary string `json:"summary"` +} + +func (o PrometheusServiceTrafficOutput) Tool() string { + return o.ToolName +} + +func prometheusQueryServiceTraffic(ctx *ai.ToolContext, input PrometheusServiceTrafficInput) (PrometheusServiceTrafficOutput, error) { + log.Printf("Tool 'prometheus_query_service_traffic' called for service: %s", input.ServiceName) + + return PrometheusServiceTrafficOutput{ + ToolName: "prometheus_query_service_traffic", + RequestRateQPS: 250.0, + ErrorRatePercentage: 5.2, + Summary: fmt.Sprintf("服务 %s 的 QPS 为 250, 错误率为 5.2%%", input.ServiceName), + }, nil +} + +// ================================================ +// Query Timeseries Database Tool +// ================================================ + +type QueryTimeseriesDatabaseInput struct { + PromqlQuery string `json:"promqlQuery" jsonschema:"required,description=PromQL query to execute"` +} + +type TimeseriesMetric struct { + Pod string `json:"pod"` +} + +type TimeseriesValue struct { + Timestamp int64 `json:"timestamp"` + Value string `json:"value"` +} + +type TimeseriesResult struct { + Metric TimeseriesMetric `json:"metric"` + Value TimeseriesValue `json:"value"` +} + +type QueryTimeseriesDatabaseOutput struct { + ToolName string `json:"toolName"` + Query string `json:"query"` + Results []TimeseriesResult `json:"results"` + Summary string `json:"summary"` +} + +func (o QueryTimeseriesDatabaseOutput) Tool() string { + return o.ToolName +} + +func queryTimeseriesDatabase(ctx *ai.ToolContext, input QueryTimeseriesDatabaseInput) (QueryTimeseriesDatabaseOutput, error) { + log.Printf("Tool 'query_timeseries_database' called with query: %s", input.PromqlQuery) + + return QueryTimeseriesDatabaseOutput{ + ToolName: "query_timeseries_database", + Query: input.PromqlQuery, + Results: []TimeseriesResult{ + { + Metric: TimeseriesMetric{Pod: "order-service-pod-1"}, + Value: TimeseriesValue{Timestamp: 1692192000, Value: "3.5"}, + }, + { + Metric: TimeseriesMetric{Pod: "order-service-pod-2"}, + Value: TimeseriesValue{Timestamp: 1692192000, Value: "3.2"}, + }, + }, + Summary: "查询返回了 2 个时间序列", + }, nil +} + +// ================================================ +// Application Performance Profiling Tool +// ================================================ + +type ApplicationPerformanceProfilingInput struct { + ServiceName string `json:"serviceName" jsonschema:"required,description=The name of the service to profile"` + PodName string `json:"podName" jsonschema:"required,description=The specific pod name to profile"` + DurationSeconds int `json:"durationSeconds" jsonschema:"required,description=Duration of profiling in seconds"` +} + +type PerformanceHotspot struct { + CPUTimePercentage float64 `json:"cpuTimePercentage"` + StackTrace []string `json:"stackTrace"` +} + +type ApplicationPerformanceProfilingOutput struct { + ToolName string `json:"toolName"` + Status string `json:"status"` + TotalSamples int `json:"totalSamples"` + Hotspots []PerformanceHotspot `json:"hotspots"` + Summary string `json:"summary"` +} + +func (o ApplicationPerformanceProfilingOutput) Tool() string { + return o.ToolName +} + +func applicationPerformanceProfiling(ctx *ai.ToolContext, input ApplicationPerformanceProfilingInput) (ApplicationPerformanceProfilingOutput, error) { + log.Printf("Tool 'application_performance_profiling' called for service: %s, pod: %s", input.ServiceName, input.PodName) + + return ApplicationPerformanceProfilingOutput{ + ToolName: "application_performance_profiling", + Status: "completed", + TotalSamples: 10000, + Hotspots: []PerformanceHotspot{ + { + CPUTimePercentage: 45.5, + StackTrace: []string{ + "com.example.OrderService.processOrder()", + "com.example.DatabaseClient.query()", + "java.sql.PreparedStatement.executeQuery()", + }, + }, + }, + Summary: "性能分析显示,45.5%的CPU时间消耗在数据库查询调用链上", + }, nil +} + +// ================================================ +// JVM Performance Analysis Tool +// ================================================ + +type JVMPerformanceAnalysisInput struct { + ServiceName string `json:"serviceName" jsonschema:"required,description=The name of the Java service to analyze"` + PodName string `json:"podName" jsonschema:"required,description=The specific pod name to analyze"` +} + +type JVMPerformanceAnalysisOutput struct { + ToolName string `json:"toolName"` + FullGcCountLastHour int `json:"fullGcCountLastHour"` + FullGcTimeAvgMillis int `json:"fullGcTimeAvgMillis"` + HeapUsagePercentage float64 `json:"heapUsagePercentage"` + Summary string `json:"summary"` +} + +func (o JVMPerformanceAnalysisOutput) Tool() string { + return o.ToolName +} + +func jvmPerformanceAnalysis(ctx *ai.ToolContext, input JVMPerformanceAnalysisInput) (JVMPerformanceAnalysisOutput, error) { + log.Printf("Tool 'jvm_performance_analysis' called for service: %s, pod: %s", input.ServiceName, input.PodName) + + return JVMPerformanceAnalysisOutput{ + ToolName: "jvm_performance_analysis", + FullGcCountLastHour: 15, + FullGcTimeAvgMillis: 1200, + HeapUsagePercentage: 85.5, + Summary: "GC activity is high, average Full GC time is 1200ms", + }, nil +} + +// ================================================ +// Trace Dependency View Tool +// ================================================ + +type TraceDependencyViewInput struct { + ServiceName string `json:"serviceName" jsonschema:"required,description=The name of the service to analyze dependencies"` +} + +type TraceDependencyViewOutput struct { + ToolName string `json:"toolName"` + UpstreamServices []string `json:"upstreamServices"` + DownstreamServices []string `json:"downstreamServices"` +} + +func (o TraceDependencyViewOutput) Tool() string { + return o.ToolName +} + +func traceDependencyView(ctx *ai.ToolContext, input TraceDependencyViewInput) (TraceDependencyViewOutput, error) { + log.Printf("Tool 'trace_dependency_view' called for service: %s", input.ServiceName) + + return TraceDependencyViewOutput{ + ToolName: "trace_dependency_view", + UpstreamServices: []string{"api-gateway", "user-service"}, + DownstreamServices: []string{"mysql-orders-db", "redis-cache", "payment-service"}, + }, nil +} + +// ================================================ +// Trace Latency Analysis Tool +// ================================================ + +type TraceLatencyAnalysisInput struct { + ServiceName string `json:"serviceName" jsonschema:"required,description=The name of the service to analyze"` + TimeRangeMinutes int `json:"timeRangeMinutes" jsonschema:"required,description=Time range in minutes"` +} + +type LatencyBottleneck struct { + DownstreamService string `json:"downstreamService"` + LatencyAvgMillis int `json:"latencyAvgMillis"` + ContributionPercentage float64 `json:"contributionPercentage"` +} + +type TraceLatencyAnalysisOutput struct { + ToolName string `json:"toolName"` + TotalLatencyAvgMillis int `json:"totalLatencyAvgMillis"` + Bottlenecks []LatencyBottleneck `json:"bottlenecks"` + Summary string `json:"summary"` +} + +func (o TraceLatencyAnalysisOutput) Tool() string { + return o.ToolName +} + +func traceLatencyAnalysis(ctx *ai.ToolContext, input TraceLatencyAnalysisInput) (TraceLatencyAnalysisOutput, error) { + log.Printf("Tool 'trace_latency_analysis' called for service: %s", input.ServiceName) + + return TraceLatencyAnalysisOutput{ + ToolName: "trace_latency_analysis", + TotalLatencyAvgMillis: 3200, + Bottlenecks: []LatencyBottleneck{ + { + DownstreamService: "mysql-orders-db", + LatencyAvgMillis: 3050, + ContributionPercentage: 95.3, + }, + { + DownstreamService: "user-service", + LatencyAvgMillis: 150, + ContributionPercentage: 4.7, + }, + }, + Summary: "平均总延迟为 3200ms。瓶颈已定位,95.3% 的延迟来自对下游 'mysql-orders-db' 的调用", + }, nil +} + +// ================================================ +// Database Connection Pool Analysis Tool +// ================================================ + +type DatabaseConnectionPoolAnalysisInput struct { + ServiceName string `json:"serviceName" jsonschema:"required,description=The name of the service to analyze"` +} + +type DatabaseConnectionPoolAnalysisOutput struct { + ToolName string `json:"toolName"` + MaxConnections int `json:"maxConnections"` + ActiveConnections int `json:"activeConnections"` + IdleConnections int `json:"idleConnections"` + PendingRequests int `json:"pendingRequests"` + Summary string `json:"summary"` +} + +func (o DatabaseConnectionPoolAnalysisOutput) Tool() string { + return o.ToolName +} + +func databaseConnectionPoolAnalysis(ctx *ai.ToolContext, input DatabaseConnectionPoolAnalysisInput) (DatabaseConnectionPoolAnalysisOutput, error) { + log.Printf("Tool 'database_connection_pool_analysis' called for service: %s", input.ServiceName) + + return DatabaseConnectionPoolAnalysisOutput{ + ToolName: "database_connection_pool_analysis", + MaxConnections: 100, + ActiveConnections: 100, + IdleConnections: 0, + PendingRequests: 58, + Summary: "数据库连接池已完全耗尽 (100/100),当前有 58 个请求正在排队等待连接", + }, nil +} + +// ================================================ +// Kubernetes Get Pod Resources Tool +// ================================================ + +type KubernetesGetPodResourcesInput struct { + ServiceName string `json:"serviceName" jsonschema:"required,description=The name of the service"` + Namespace string `json:"namespace" jsonschema:"required,description=The namespace of the service"` +} + +type PodResource struct { + PodName string `json:"podName"` + CPUUsageCores float64 `json:"cpuUsageCores"` + CPURequestCores float64 `json:"cpuRequestCores"` + CPULimitCores float64 `json:"cpuLimitCores"` + MemoryUsageMi int `json:"memoryUsageMi"` + MemoryRequestMi int `json:"memoryRequestMi"` + MemoryLimitMi int `json:"memoryLimitMi"` +} + +type KubernetesGetPodResourcesOutput struct { + ToolName string `json:"toolName"` + Pods []PodResource `json:"pods"` + Summary string `json:"summary"` +} + +func (o KubernetesGetPodResourcesOutput) Tool() string { + return o.ToolName +} + +func kubernetesGetPodResources(ctx *ai.ToolContext, input KubernetesGetPodResourcesInput) (KubernetesGetPodResourcesOutput, error) { + log.Printf("Tool 'kubernetes_get_pod_resources' called for service: %s in namespace: %s", input.ServiceName, input.Namespace) + + return KubernetesGetPodResourcesOutput{ + ToolName: "kubernetes_get_pod_resources", + Pods: []PodResource{ + { + PodName: "order-service-pod-1", + CPUUsageCores: 0.8, + CPURequestCores: 0.5, + CPULimitCores: 1.0, + MemoryUsageMi: 1800, + MemoryRequestMi: 1024, + MemoryLimitMi: 2048, + }, + { + PodName: "order-service-pod-2", + CPUUsageCores: 0.9, + CPURequestCores: 0.5, + CPULimitCores: 1.0, + MemoryUsageMi: 1950, + MemoryRequestMi: 1024, + MemoryLimitMi: 2048, + }, + }, + Summary: "2 out of 2 pods are near their memory limits", + }, nil +} + +// ================================================ +// Dubbo Service Status Tool +// ================================================ + +type DubboServiceStatusInput struct { + ServiceName string `json:"serviceName" jsonschema:"required,description=The name of the Dubbo service"` +} + +type DubboProvider struct { + IP string `json:"ip"` + Port int `json:"port"` + Status string `json:"status"` +} + +type DubboConsumer struct { + IP string `json:"ip"` + Application string `json:"application"` + Status string `json:"status"` +} + +type DubboServiceStatusOutput struct { + ToolName string `json:"toolName"` + Providers []DubboProvider `json:"providers"` + Consumers []DubboConsumer `json:"consumers"` +} + +func (o DubboServiceStatusOutput) Tool() string { + return o.ToolName +} + +func dubboServiceStatus(ctx *ai.ToolContext, input DubboServiceStatusInput) (DubboServiceStatusOutput, error) { + log.Printf("Tool 'dubbo_service_status' called for service: %s", input.ServiceName) + + return DubboServiceStatusOutput{ + ToolName: "dubbo_service_status", + Providers: []DubboProvider{ + {IP: "192.168.1.10", Port: 20880, Status: "healthy"}, + {IP: "192.168.1.11", Port: 20880, Status: "healthy"}, + }, + Consumers: []DubboConsumer{ + {IP: "192.168.1.20", Application: "web-frontend", Status: "connected"}, + {IP: "192.168.1.21", Application: "api-gateway", Status: "connected"}, + }, + }, nil +} + +// ================================================ +// Query Log Database Tool +// ================================================ + +type QueryLogDatabaseInput struct { + ServiceName string `json:"serviceName" jsonschema:"required,description=The name of the service"` + Keyword string `json:"keyword" jsonschema:"required,description=Keyword to search for"` + TimeRangeMinutes int `json:"timeRangeMinutes" jsonschema:"required,description=Time range in minutes"` +} + +type LogEntry struct { + Timestamp string `json:"timestamp"` + Level string `json:"level"` + Message string `json:"message"` +} + +type QueryLogDatabaseOutput struct { + ToolName string `json:"toolName"` + TotalHits int `json:"totalHits"` + Logs []LogEntry `json:"logs"` + Summary string `json:"summary"` +} + +func (o QueryLogDatabaseOutput) Tool() string { + return o.ToolName +} + +func queryLogDatabase(ctx *ai.ToolContext, input QueryLogDatabaseInput) (QueryLogDatabaseOutput, error) { + log.Printf("Tool 'query_log_database' called for service: %s, keyword: %s", input.ServiceName, input.Keyword) + + return QueryLogDatabaseOutput{ + ToolName: "query_log_database", + TotalHits: 152, + Logs: []LogEntry{ + { + Timestamp: "2025-08-16T15:32:05Z", + Level: "WARN", + Message: "Timeout waiting for idle object in database connection pool.", + }, + { + Timestamp: "2025-08-16T15:32:08Z", + Level: "WARN", + Message: "Timeout waiting for idle object in database connection pool.", + }, + }, + Summary: fmt.Sprintf("在过去%d分钟内,发现 152 条关于 '%s' 的日志条目", input.TimeRangeMinutes, input.Keyword), + }, nil +} + +// ================================================ +// Search Archived Logs Tool +// ================================================ + +type SearchArchivedLogsInput struct { + FilePathPattern string `json:"filePathPattern" jsonschema:"required,description=File path pattern to search"` + GrepKeyword string `json:"grepKeyword" jsonschema:"required,description=Keyword to grep for"` +} + +type MatchingLine struct { + FilePath string `json:"filePath"` + LineNumber int `json:"lineNumber"` + LineContent string `json:"lineContent"` +} + +type SearchArchivedLogsOutput struct { + ToolName string `json:"toolName"` + FilesSearched int `json:"filesSearched"` + MatchingLines []MatchingLine `json:"matchingLines"` + Summary string `json:"summary"` +} + +func (o SearchArchivedLogsOutput) Tool() string { + return o.ToolName +} + +func searchArchivedLogs(ctx *ai.ToolContext, input SearchArchivedLogsInput) (SearchArchivedLogsOutput, error) { + log.Printf("Tool 'search_archived_logs' called with pattern: %s, keyword: %s", input.FilePathPattern, input.GrepKeyword) + + return SearchArchivedLogsOutput{ + ToolName: "search_archived_logs", + FilesSearched: 5, + MatchingLines: []MatchingLine{ + { + FilePath: "/logs/mysql-orders-db/slow-query-2025-08-16.log.gz", + LineNumber: 1024, + LineContent: "Query_time: 25.3s | SELECT COUNT(id), SUM(price) FROM orders WHERE user_id = 'VIP_USER_123';", + }, + { + FilePath: "/logs/mysql-orders-db/slow-query-2025-08-16.log.gz", + LineNumber: 1029, + LineContent: "Query_time: 28.1s | SELECT COUNT(id), SUM(price) FROM orders WHERE user_id = 'VIP_USER_456';", + }, + }, + Summary: "在归档的日志文件中,发现了多条查询,搜索了 5 个文件,找到了 2 条匹配行", + }, nil +} + +// ================================================ +// Query Knowledge Base Tool +// ================================================ + +type QueryKnowledgeBaseInput struct { + QueryText string `json:"queryText" jsonschema:"required,description=Query text to search for"` +} + +type KnowledgeDocument struct { + Source string `json:"source"` + ContentSnippet string `json:"contentSnippet"` + SimilarityScore float64 `json:"similarityScore"` +} + +type QueryKnowledgeBaseOutput struct { + ToolName string `json:"toolName"` + Documents []KnowledgeDocument `json:"documents"` +} + +func (o QueryKnowledgeBaseOutput) Tool() string { + return o.ToolName +} + +func queryKnowledgeBase(ctx *ai.ToolContext, input QueryKnowledgeBaseInput) (QueryKnowledgeBaseOutput, error) { + log.Printf("Tool 'query_knowledge_base' called with query: %s", input.QueryText) + + return QueryKnowledgeBaseOutput{ + ToolName: "query_knowledge_base", + Documents: []KnowledgeDocument{ + { + Source: "Project-VIP-Feature-Design-Doc.md", + ContentSnippet: "The 'Lifetime Achievement' badge requires calculating total user spending. Note: This may cause slow queries on the orders table if the user_id column is not properly indexed.", + SimilarityScore: 0.92, + }, + }, + }, nil +} + +// ================================================ +// Tool Registration Function +// ================================================ + +var registeredTools []ai.Tool = nil Review Comment: [nitpick] Explicit initialization to nil is unnecessary for slice types. Simply declare as `var registeredTools []ai.Tool` for cleaner code. ```suggestion var registeredTools []ai.Tool ``` -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: notifications-unsubscr...@dubbo.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org --------------------------------------------------------------------- To unsubscribe, e-mail: notifications-unsubscr...@dubbo.apache.org For additional commands, e-mail: notifications-h...@dubbo.apache.org