This is an automated email from the ASF dual-hosted git repository.

sk0x50 pushed a commit to branch master
in repository https://gitbox.apache.org/repos/asf/ignite-website.git


The following commit(s) were added to refs/heads/master by this push:
     new 1a9ecd37a7 IGNITE-27116 Part 1 of AI 3 architecture blog (#288)
1a9ecd37a7 is described below

commit 1a9ecd37a78e62d4772d8441f691c00454ab1fbe
Author: jinxxxoid <[email protected]>
AuthorDate: Tue Nov 25 20:59:28 2025 +0400

    IGNITE-27116 Part 1 of AI 3 architecture blog (#288)
---
 _src/_blog/apache-ignite-3-architecture-part-1.pug | 363 +++++++++++++++
 ...ml => apache-ignite-3-architecture-part-1.html} | 498 +++++++++++++--------
 blog/apache/index.html                             |  39 +-
 blog/ignite/index.html                             |  43 +-
 blog/index.html                                    |  43 +-
 5 files changed, 732 insertions(+), 254 deletions(-)

diff --git a/_src/_blog/apache-ignite-3-architecture-part-1.pug 
b/_src/_blog/apache-ignite-3-architecture-part-1.pug
new file mode 100644
index 0000000000..d82b99df73
--- /dev/null
+++ b/_src/_blog/apache-ignite-3-architecture-part-1.pug
@@ -0,0 +1,363 @@
+---
+title: "Apache Ignite Architecture Series: Part 1 - When Multi-System 
Complexity Compounds at Scale"
+author: "Michael Aglietti"
+date: 2025-11-25
+tags:
+    - apache
+    - ignite
+---
+
+p Apache Ignite shows what really happens once your #[em good enough] 
multi-system setup starts cracking under high-volume load. This piece breaks 
down why the old stack stalls at scale and how a unified, memory-first 
architecture removes the latency tax entirely.
+
+<!-- end -->
+
+p Your high-velocity application started with smart architectural choices. 
PostgreSQL for reliable transactions, Redis for fast cache access, custom 
processing for specific business logic. These decisions enabled initial success 
and growth.
+
+p But success changes the game. Your application now processes thousands of 
events per second and customers expect microsecond response times. Real-time 
insights drive competitive advantage. The same architectural choices that 
enabled growth now create performance bottlenecks that compound with every 
additional event.
+
+p.
+  #[strong At high event volumes, data movement between systems becomes the 
primary performance constraint].
+
+hr
+
+h3 The Scale Reality for High-Velocity Applications
+
+p As event volume grows, architectural compromises that once seemed reasonable 
at lower scale become critical bottlenecks. Consider a financial trading 
platform, gaming backend, or IoT processor handling tens of thousands of 
operations per second.
+
+h3 Event Processing Under Pressure
+
+p #[strong High-frequency event characteristics]
+ul
+  li Events arrive faster than traditional batch processing can handle
+  li Each event requires immediate consistency checks against live data
+  li Results must update multiple downstream systems simultaneously
+  li Network delays compound into user-visible lag
+  li #[strong Traffic spikes create systemic pressure] — traditional stacks 
drop connections or crash when overwhelmed
+
+p #[strong The compounding effect]
+ul
+  li At 100 events per second, network latency of 2ms adds minimal overhead.
+  li At 10,000 events per second, that same 2ms latency creates a 20-second 
processing backlog within system boundaries.
+  li During traffic spikes (50,000+ events per second), traditional systems 
collapse entirely, dropping connections and losing data when they're needed 
most.
+p The math scales against you.
+
+hr
+
+h3 When Smart Choices Become Scaling Limits
+
+p #[strong Initial Architecture, works great at lower scale:]
+
+pre.mermaid.
+    flowchart TB
+        subgraph "Event Processing"
+            Events[High-Volume Events<br/>10,000/sec]
+        end
+
+        subgraph "Multi-System Architecture"
+            Redis[(Cache<br/>Session Data<br/>2ms latency)]
+            PostgreSQL[(Relational DB<br/>Transaction Data<br/>5ms latency)]
+            Processing[Custom Processing<br/>Business Logic<br/>3ms latency]
+        end
+
+        Events --> Redis
+        Events --> PostgreSQL
+        Events --> Processing
+
+        Redis <-->|Sync Overhead| PostgreSQL
+        PostgreSQL <-->|Data Movement| Processing
+        Processing <-->|Cache Updates| Redis
+
+p #[strong What happens at scale]
+ul
+  li #[strong Network-latency tax:] Every system hop adds milliseconds that 
compound
+  li #[strong Synchronization delays:] Keeping systems consistent creates 
processing queues
+  li #[strong Memory overhead:] Each system caches the same data in different 
formats
+  li #[strong Consistency windows:] Brief periods where systems show different 
data states
+
+hr
+
+h3 The Hidden Cost of Multi-System Success
+
+p #[strong Data Movement Overhead:]
+
+p Your events don't just need processing, they need processing that maintains 
consistency across all systems.
+
+p Each event triggers:
+ul
+  li #[strong Cache lookup (Redis):] ≈ 0.5 ms network + processing
+  li #[strong Transaction validation (PostgreSQL):] ≈ 2 ms network + disk I/O
+  li #[strong Business-logic execution (Custom):] ≈ 1ms processing + data 
marshalling
+  li #[strong Result synchronization (across systems):] ≈ 3 ms coordination 
overhead
+
+p #[strong Minimum per-event cost ≈ 7 ms before business logic.]
+p At 10,000 events/s, you’d need 70 seconds of processing capacity just 
#[strong for data movement] per real-time second!
+
+hr
+
+h3 The Performance Gap That Grows With Success
+
+h3 Why Traditional Options Fail
+
+p #[strong Option 1: Scale out each system]
+ul
+  li #[strong Strategy]: Add cache clusters, database replicas, processing 
nodes
+  li #[strong Result]: More systems to coordinate, exponentially more 
complexity
+  li #[strong Reality]: Network overhead grows faster than processing capacity
+
+p #[strong Option 2: Custom optimization]
+ul
+  li #[strong Strategy]: Build application-layer caching, custom consistency 
protocols
+  li #[strong Result]: Engineering team maintains complex, system-specific 
optimizations
+  li #[strong Reality]: Solutions don't generalize; each optimization creates 
technical debt
+
+p #[strong Option 3: Accept compromises]
+ul
+  li #[strong Strategy]: Use async processing, eventual consistency,  and 
accept delayed insights
+  li #[strong Result]: Business requirements compromised to fit architectural 
limitations
+  li #[strong Reality]: Competitive disadvantage as customer expectations grow
+
+hr
+
+h3 The Critical Performance Gap
+
+table(style="borderlicollapse: collapse; margin: 20px 0; width: 100%;")
+  thead
+    tr
+      th(style="border: 1px solid #ddd; padding: 12px; background-color: 
#f5f5f5; text-align: left;") Component
+      th(style="border: 1px solid #ddd; padding: 12px; background-color: 
#f5f5f5; text-align: left;") Optimized for
+      th(style="border: 1px solid #ddd; padding: 12px; background-color: 
#f5f5f5; text-align: left;") Typical Latency
+  tbody
+    tr
+      td(style="border: 1px solid #ddd; padding: 12px;") Database
+      td(style="border: 1px solid #ddd; padding: 12px;") ACID transactions
+      td(style="border: 1px solid #ddd; padding: 12px;") Milliseconds
+    tr
+      td(style="border: 1px solid #ddd; padding: 12px;") Cache
+      td(style="border: 1px solid #ddd; padding: 12px;") Access speed
+      td(style="border: 1px solid #ddd; padding: 12px;") Microseconds
+    tr
+      td(style="border: 1px solid #ddd; padding: 12px;") Compute
+      td(style="border: 1px solid #ddd; padding: 12px;") Throughput
+      td(style="border: 1px solid #ddd; padding: 12px;") Minutes – hours
+
+
+p Applications needing #[strong microsecond insights] on #[strong millisecond 
transactions] have no good options at scale in traditional architectures.
+
+p During traffic spikes, traditional architectures either drop connections 
(data loss) or degrade performance (missed SLAs). High-velocity applications 
need intelligent flow control that guarantees stability under pressure while 
preserving data integrity.
+
+hr
+
+h3 Event Processing at Scale
+
+p #[strong Here's what traditional multi-system event processing costs:]
+
+pre
+  code.
+    // Traditional multi-system event processing
+    long startTime = System.nanoTime();
+
+    // 1. Cache lookup for session data
+    String sessionData = redisClient.get("session:" + eventId);  // ~500μs 
network
+    if (sessionData == null) {
+        sessionData = postgresDB.query("SELECT * FROM sessions WHERE id = ?", 
eventId);  // ~2ms fallback
+        redisClient.setex("session:" + eventId, 300, sessionData);  // ~300μs 
cache update
+    }
+
+    // 2. Transaction processing
+    postgresDB.executeTransaction(tx -> {  // ~2-5ms transaction
+        tx.execute("INSERT INTO events VALUES (?, ?, ?)", eventId, userId, 
eventData);
+        tx.execute("UPDATE user_stats SET event_count = event_count + 1 WHERE 
user_id = ?", userId);
+    });
+
+    // 3. Custom processing with consistency coordination
+    ProcessingResult result = customProcessor.process(eventData, sessionData); 
 // ~1ms processing
+    redisClient.setex("result:" + eventId, 600, result);  // ~300μs result 
caching
+
+    // 4. Synchronization across systems
+    ensureConsistency(eventId, sessionData, result);  // ~2-3ms coordination
+
+    long totalTime = System.nanoTime() - startTime;
+    // Total: 6-12ms per event (not including queuing delays)
+
+
+p #[strong Compound Effect at Scale:]
+
+table(style="border-collapse: collapse; margin: 20px 0; width: 100%;")
+  thead
+    tr
+      th(style="border: 1px solid #ddd; padding: 12px; background-color: 
#f5f5f5; text-align: left;") Rate
+      th(style="border: 1px solid #ddd; padding: 12px; background-color: 
#f5f5f5; text-align: left;") Required processing time / s
+  tbody
+    tr
+      td(style="border: 1px solid #ddd; padding: 12px;") 1,000 events / s
+      td(style="border: 1px solid #ddd; padding: 12px;") 6–12 s
+    tr
+      td(style="border: 1px solid #ddd; padding: 12px;") 5,000 events / s
+      td(style="border: 1px solid #ddd; padding: 12px;") 30–60 s
+    tr
+      td(style="border: 1px solid #ddd; padding: 12px;") 10,000 events / s
+      td(style="border: 1px solid #ddd; padding: 12px;") 60–120 s
+
+p #[strong The math doesn’t work:] parallelism helps, but coordination 
overhead grows exponentially with system count.
+
+hr
+
+h3 Real-World Breaking Points
+ul
+  li #[strong Financial services]: Trading platforms hitting 10,000+ 
trades/second discover that compliance reporting delays impact trading 
decisions.
+  li #[strong Gaming platforms]: Multiplayer backends processing user actions 
find that leaderboard updates lag behind gameplay events.
+  li #[strong IoT analytics]: Manufacturing systems processing sensor data 
realize that anomaly detection arrives too late for preventive action.
+
+hr
+
+h3 The Apache Ignite Alternative
+
+h3 Eliminating Multi-System Overhead
+
+pre.mermaid.
+    flowchart TB
+        subgraph "Event Processing"
+            Events[High-Volume Events<br/>10,000/sec]
+        end
+
+        subgraph "Apache Ignite Platform"
+            subgraph "Collocated Processing"
+                Memory[Memory-First Storage<br/>Optimized Access Times]
+                Transactions[MVCC Transactions<br/>ACID Guarantees]
+                Compute[Event Processing<br/>Where Data Lives]
+            end
+        end
+
+        Events --> Memory
+        Memory --> Transactions
+        Transactions --> Compute
+
+        Memory <-->|Minimal Copying| Transactions
+        Transactions <-->|Collocated| Compute
+        Compute <-->|Direct Access| Memory
+
+p #[strong Key difference:] events process #[strong where the data lives], 
eliminating inter-system latency.
+
+hr
+
+h3 Apache Ignite Performance Reality Check
+
+p #[strong Here's the same event processing with integrated architecture:]
+
+pre
+  code.
+    // Apache Ignite integrated event processing
+    try (IgniteClient client = 
IgniteClient.builder().addresses("cluster:10800").build()) {
+        // Single integrated transaction spanning cache, database, and compute
+        client.transactions().runInTransaction(tx -> {
+            // 1. Access session data (in memory, no network overhead)
+            Session session = client.tables().table("sessions")
+                .keyValueView().get(tx, Tuple.create().set("id", eventId));
+
+            // 2. Process event with ACID guarantees (same memory space)
+            client.sql().execute(tx, "INSERT INTO events VALUES (?, ?, ?)",
+                               eventId, userId, eventData);
+
+            // 3. Execute processing collocated with data
+            ProcessingResult result = client.compute().execute(
+                JobTarget.colocated("events", Tuple.create().set("id", 
eventId)),
+                EventProcessor.class, eventData);
+
+            // 4. Update derived data (same transaction, guaranteed 
consistency)
+            client.sql().execute(tx, "UPDATE user_stats SET event_count = 
event_count + 1 WHERE user_id = ?", userId);
+
+            return result;
+        });
+    }
+    // Result: microsecond-range event processing through integrated 
architecture
+
+p Processing 10,000 events/s is achievable with integrated architecture 
eliminating network overhead.
+
+hr
+
+h3 The Unified Data-Access Advantage
+
+p #[strong Here's what eliminates the need for separate systems:]
+
+pre
+  code.
+    // The SAME data, THREE access paradigms, ONE system
+    Table customerTable = client.tables().table("customers");
+
+    // 1. Key-value access for cache-like performance
+    Customer customer = customerTable.keyValueView()
+        .get(tx, Tuple.create().set("customer_id", customerId));
+
+    // 2. SQL access for complex analytics
+    ResultSet&lt;SqlRow&gt analytics = client.sql().execute(tx,
+        "SELECT segment, AVG(order_value) FROM customers WHERE region = ?", 
region);
+
+    // 3. Record access for type-safe operations
+    CustomerRecord record = customerTable.recordView()
+        .get(tx, new CustomerRecord(customerId));
+
+    // All three: same schema, same data, same transaction model
+
+p #[strong Eliminates:]
+ul
+  li #[strong Cache API] for cache operations
+  li Data movement during #[strong distributed joins] for analytical queries
+  li #[strong Custom mapping logic] for type-safe access
+  li #[strong Data synchronization] between cache and database
+  li #[strong Schema drift risks] across different systems
+
+p #[strong Unified advantage:] One schema, one transaction model, multiple 
access paths.
+
+hr
+
+h3 Apache Ignite Architecture Preview
+
+p The ability to handle high-velocity events without multi-system overhead 
requires specific technical innovations:
+ul
+  li #[strong Memory-first storage]: Event data lives in memory with optimized 
access times typically under 10 microseconds for cache-resident data
+  li #[strong Collocated compute]: Processing happens where data already 
exists, eliminating movement
+  li #[strong Integrated transactions]: ACID guarantees span cache, database, 
and compute operations
+  li #[strong Minimal data copying]: Events process against live data through 
collocated processing and direct memory access
+
+p These innovations address the compound effects that make multi-system 
architectures unsuitable for high-velocity applications.
+
+hr
+
+h3 Business Impact of Architectural Evolution
+
+h3 Cost Efficiency
+ul
+  li #[strong Reduced infrastructure]: one platform instead of several
+  li #[strong Lower network costs]: eliminate inter-system bandwidth overhead
+  li #[strong Simplified operations]: fewer platforms to monitor, backup, and 
scale
+
+h3 Performance Gains
+ul
+  li #[strong Microsecond latency]: eliminates network overhead
+  li #[strong Higher throughput]: more events on existing hardware
+  li #[strong Predictable scaling]: consistent performance under load
+
+h3 Developer Experience
+ul
+  li #[strong Single API]: one model for all data operations
+  li #[strong Consistent behavior]: no synchronization anomalies
+  li #[strong Faster delivery]: one integrated system to test and debug
+
+hr
+
+h3 The Architectural Evolution Decision
+
+p Every successful application reaches this point: the architecture that once 
fueled growth now constrains it.
+
+p #[strong The question isn't whether you'll hit multi-system scaling limits. 
It's how you'll evolve past them.]
+
+p #[strong Apache Ignite] consolidates transactions, caching, and compute into 
a single, memory-first platform designed for high-velocity workloads. Instead 
of managing the compound complexity of coordinating multiple systems at scale, 
you consolidate core operations into a platform designed for high-velocity 
applications.
+
+p Your winning architecture doesn't have to become your scaling limit. It can 
evolve into the foundation for your next phase of growth.
+
+hr
+br
+|
+p #[em Return next Tuesday for Part 2, where we examine how Apache Ignite’s 
memory-first architecture enables optimized event processing while maintaining 
durability, forming the basis for true high-velocity performance.]
+
+
diff --git a/blog/ignite/index.html 
b/blog/apache-ignite-3-architecture-part-1.html
similarity index 56%
copy from blog/ignite/index.html
copy to blog/apache-ignite-3-architecture-part-1.html
index 6c21066391..e1d2935c2d 100644
--- a/blog/ignite/index.html
+++ b/blog/apache-ignite-3-architecture-part-1.html
@@ -3,16 +3,11 @@
   <head>
     <meta charset="UTF-8" />
     <meta name="viewport" content="width=device-width, initial-scale=1.0, 
maximum-scale=1" />
-    <title>Entries tagged [ignite]</title>
-    <meta property="og:title" content="Entries tagged [ignite]" />
-    <link rel="canonical" href="https://ignite.apache.org/blog"; />
-    <meta property="og:type" content="article" />
-    <meta property="og:url" content="https://ignite.apache.org/blog"; />
-    <meta property="og:image" content="/img/og-pic.png" />
+    <title>Apache Ignite Architecture Series: Part 1 - When Multi-System 
Complexity Compounds at Scale</title>
     <link rel="stylesheet" 
href="/js/vendor/hystmodal/hystmodal.min.css?ver=0.9" />
     <link rel="stylesheet" href="/css/utils.css?ver=0.9" />
     <link rel="stylesheet" href="/css/site.css?ver=0.9" />
-    <link rel="stylesheet" href="/css/blog.css?ver=0.9" />
+    <link rel="stylesheet" href="../css/blog.css?ver=0.9" />
     <link rel="stylesheet" href="/css/media.css?ver=0.9" media="only screen 
and (max-width:1199px)" />
     <link rel="icon" type="image/png" href="/img/favicon.png" />
     <!-- Matomo -->
@@ -337,205 +332,347 @@
     <div class="dropmenu__back"></div>
     <header class="hdrfloat hdr__white jsHdrFloatBase"></header>
     <div class="container blog">
-      <section class="blog__header"><h1>Entries tagged [ignite]</h1></section>
+      <section class="blog__header post_page__header">
+        <a href="/blog/">← Apache Ignite Blog</a>
+        <h1>Apache Ignite Architecture Series: Part 1 - When Multi-System 
Complexity Compounds at Scale</h1>
+        <p>
+          November 25, 2025 by <strong>Michael Aglietti. Share in </strong><a 
href="http://www.facebook.com/sharer.php?u=https://ignite.apache.org/blog/undefined";>Facebook</a><span>,
 </span
+          ><a href="http://twitter.com/home?status=Apache Ignite Architecture 
Series: Part 1 - When Multi-System Complexity Compounds at 
Scale%20https://ignite.apache.org/blog/undefined";>Twitter</a>
+        </p>
+      </section>
       <div class="blog__content">
         <main class="blog_main">
           <section class="blog__posts">
             <article class="post">
-              <div class="post__header">
-                <h2><a 
href="/blog/schema-design-for-distributed-systems-ai3.html"> Schema Design for 
Distributed Systems: Why Data Placement Matters</a></h2>
-                <div>
-                  November 18, 2025 by Michael Aglietti. Share in <a 
href="http://www.facebook.com/sharer.php?u=https://ignite.apache.org/blog/schema-design-for-distributed-systems-ai3.html";>Facebook</a><span>,
 </span
-                  ><a href="http://twitter.com/home?status= Schema Design for 
Distributed Systems: Why Data Placement 
Matters%20https://ignite.apache.org/blog/schema-design-for-distributed-systems-ai3.html";>Twitter</a>
-                </div>
-              </div>
-              <div class="post__content"><p>Discover how Apache Ignite 3 keeps 
related data together with schema-driven colocation, cutting cross-node traffic 
and making distributed queries fast, local and predictable.</p></div>
-              <div class="post__footer"><a class="more" 
href="/blog/schema-design-for-distributed-systems-ai3.html">↓ Read all</a></div>
-            </article>
-            <article class="post">
-              <div class="post__header">
-                <h2><a 
href="/blog/getting-to-know-apache-ignite-3.html">Getting to Know Apache Ignite 
3: A Schema-Driven Distributed Computing Platform</a></h2>
-                <div>
-                  November 11, 2025 by Michael Aglietti. Share in <a 
href="http://www.facebook.com/sharer.php?u=https://ignite.apache.org/blog/getting-to-know-apache-ignite-3.html";>Facebook</a><span>,
 </span
-                  ><a href="http://twitter.com/home?status=Getting to Know 
Apache Ignite 3: A Schema-Driven Distributed Computing 
Platform%20https://ignite.apache.org/blog/getting-to-know-apache-ignite-3.html";>Twitter</a>
-                </div>
-              </div>
-              <div class="post__content">
+              <div>
                 <p>
-                  Apache Ignite 3 is a memory-first distributed SQL database 
platform that consolidates transactions, analytics, and compute workloads 
previously requiring separate systems. Built from the ground up, it represents 
a complete
-                  departure from traditional caching solutions toward a 
unified distributed computing platform with microsecond latencies and 
collocated processing capabilities.
+                  Apache Ignite shows what really happens once your <em>good 
enough</em> multi-system setup starts cracking under high-volume load. This 
piece breaks down why the old stack stalls at scale and how a unified, 
memory-first
+                  architecture removes the latency tax entirely.
                 </p>
-              </div>
-              <div class="post__footer"><a class="more" 
href="/blog/getting-to-know-apache-ignite-3.html">↓ Read all</a></div>
-            </article>
-            <article class="post">
-              <div class="post__header">
-                <h2><a href="/blog/whats-new-in-apache-ignite-3-1.html">Apache 
Ignite 3.1: Performance, Multi-Language Client Support, and Production 
Hardening</a></h2>
-                <div>
-                  November 3, 2025 by Evgeniy Stanilovskiy. Share in <a 
href="http://www.facebook.com/sharer.php?u=https://ignite.apache.org/blog/whats-new-in-apache-ignite-3-1.html";>Facebook</a><span>,
 </span
-                  ><a href="http://twitter.com/home?status=Apache Ignite 3.1: 
Performance, Multi-Language Client Support, and Production 
Hardening%20https://ignite.apache.org/blog/whats-new-in-apache-ignite-3-1.html";>Twitter</a>
-                </div>
-              </div>
-              <div class="post__content">
+                <!-- end -->
                 <p>
-                  Apache Ignite 3.1 improves the three areas that matter most 
when running distributed systems: performance at scale, language flexibility, 
and operational visibility. The release also fixes hundreds of bugs related to 
data
-                  corruption, race conditions, and edge cases discovered since 
3.0.
+                  Your high-velocity application started with smart 
architectural choices. PostgreSQL for reliable transactions, Redis for fast 
cache access, custom processing for specific business logic. These decisions 
enabled initial
+                  success and growth.
                 </p>
-              </div>
-              <div class="post__footer"><a class="more" 
href="/blog/whats-new-in-apache-ignite-3-1.html">↓ Read all</a></div>
-            </article>
-            <article class="post">
-              <div class="post__header">
-                <h2><a href="/blog/whats-new-in-apache-ignite-3-0.html">What's 
New in Apache Ignite 3.0</a></h2>
-                <div>
-                  February 24, 2025 by Stanislav Lukyanov. Share in <a 
href="http://www.facebook.com/sharer.php?u=https://ignite.apache.org/blog/whats-new-in-apache-ignite-3-0.html";>Facebook</a><span>,
 </span
-                  ><a href="http://twitter.com/home?status=What's New in 
Apache Ignite 
3.0%20https://ignite.apache.org/blog/whats-new-in-apache-ignite-3-0.html";>Twitter</a>
-                </div>
-              </div>
-              <div class="post__content">
                 <p>
-                  Apache Ignite 3.0 is the latest milestone in Apache Ignite 
evolution that enhances developer experience, platform resilience, and 
efficiency. In this article, we’ll explore the key new features and 
improvements in Apache
-                  Ignite 3.0.
+                  But success changes the game. Your application now processes 
thousands of events per second and customers expect microsecond response times. 
Real-time insights drive competitive advantage. The same architectural choices
+                  that enabled growth now create performance bottlenecks that 
compound with every additional event.
                 </p>
-              </div>
-              <div class="post__footer"><a class="more" 
href="/blog/whats-new-in-apache-ignite-3-0.html">↓ Read all</a></div>
-            </article>
-            <article class="post">
-              <div class="post__header">
-                <h2><a href="/blog/apache-ignite-2-17-0.html">Apache Ignite 
2.17 Release: What’s New</a></h2>
-                <div>
-                  February 13, 2025 by Nikita Amelchev. Share in <a 
href="http://www.facebook.com/sharer.php?u=https://ignite.apache.org/blog/apache-ignite-2-17-0.html";>Facebook</a><span>,
 </span
-                  ><a href="http://twitter.com/home?status=Apache Ignite 2.17 
Release: What’s 
New%20https://ignite.apache.org/blog/apache-ignite-2-17-0.html";>Twitter</a>
-                </div>
-              </div>
-              <div class="post__content">
+                <p><strong>At high event volumes, data movement between 
systems becomes the primary performance constraint</strong>.</p>
+                <hr />
+                <h3>The Scale Reality for High-Velocity Applications</h3>
                 <p>
-                  We are happy to announce the release of <a 
href="https://ignite.apache.org/";>Apache Ignite </a>2.17.0! In this latest 
version, the Ignite community has introduced a range of new features and 
improvements to deliver a more
-                  efficient, flexible, and future-proof platform. Below, we’ll 
cover the key highlights that you can look forward to when upgrading to the new 
release.
+                  As event volume grows, architectural compromises that once 
seemed reasonable at lower scale become critical bottlenecks. Consider a 
financial trading platform, gaming backend, or IoT processor handling tens of 
thousands of
+                  operations per second.
                 </p>
-              </div>
-              <div class="post__footer"><a class="more" 
href="/blog/apache-ignite-2-17-0.html">↓ Read all</a></div>
-            </article>
-            <article class="post">
-              <div class="post__header">
-                <h2><a 
href="/blog/apache-ignite-net-intel-cet-fix.html">Ignite on .NET 9 and Intel 
CET</a></h2>
-                <div>
-                  November 22, 2024 by Pavel Tupitsyn. Share in <a 
href="http://www.facebook.com/sharer.php?u=https://ignite.apache.org/blog/apache-ignite-net-intel-cet-fix.html";>Facebook</a><span>,
 </span
-                  ><a href="http://twitter.com/home?status=Ignite on .NET 9 
and Intel 
CET%20https://ignite.apache.org/blog/apache-ignite-net-intel-cet-fix.html";>Twitter</a>
-                </div>
-              </div>
-              <div class="post__content">
-                <p>Old JDK code meets new Intel security feature, JVM + CLR in 
one process, and a mysterious crash.</p>
-                <p><a href="https://ptupitsyn.github.io/Ignite-on-NET-9/";>Read 
More...</a></p>
-              </div>
-            </article>
-            <article class="post">
-              <div class="post__header">
-                <h2><a href="/blog/apache-ignite-2-16-0.html">Apache Ignite 
2.16.0: Cache dumps, Calcite engine stabilization, JDK 14+ bug fixes</a></h2>
-                <div>
-                  December 25, 2023 by Nikita Amelchev. Share in <a 
href="http://www.facebook.com/sharer.php?u=https://ignite.apache.org/blog/apache-ignite-2-16-0.html";>Facebook</a><span>,
 </span
-                  ><a href="http://twitter.com/home?status=Apache Ignite 
2.16.0: Cache dumps, Calcite engine stabilization, JDK 14+ bug 
fixes%20https://ignite.apache.org/blog/apache-ignite-2-16-0.html";>Twitter</a>
-                </div>
-              </div>
-              <div class="post__content">
-                <p>
-                  As of December 25, 2023, <a 
href="https://ignite.apache.org/";>Apache Ignite </a>2.16 has been released. You 
can directly check the full list of resolved <a 
href="https://s.apache.org/j3brc";>Important JIRA tasks </a>but
-                  let&apos;s briefly overview some valuable improvements.
-                </p>
-                <h3 id="cache-dumps">Cache dumps</h3>
-                <p>
-                  Ignite has persistent cache <a 
href="https://ignite.apache.org/docs/latest/snapshots/snapshots";>snapshots 
</a>and this feature is highly appreciated by Ignite users. This release 
introduces another way to make a copy of
-                  user data - a cache dump.
-                </p>
-                <p>
-                  The cache dump is essentially a file that contains all 
entries of a cache group at the time of dump creation. Dump is consistent like 
a snapshot, which means all entries that existed in the cluster at the moment 
of dump
-                  creation will be included in the dump file. Meta information 
of dumped caches and binary meta are also included in the dump.
-                </p>
-                <p>Main differences from cache snapshots:</p>
+                <h3>Event Processing Under Pressure</h3>
+                <p><strong>High-frequency event characteristics</strong></p>
                 <ul>
-                  <li>Supports in-memory caches that a snapshot feature does 
not support.</li>
-                  <li>Takes up less disk space. The dump contains only the 
cache entries as-is.</li>
-                  <li>Can be used for offline data processing.</li>
+                  <li>Events arrive faster than traditional batch processing 
can handle</li>
+                  <li>Each event requires immediate consistency checks against 
live data</li>
+                  <li>Results must update multiple downstream systems 
simultaneously</li>
+                  <li>Network delays compound into user-visible lag</li>
+                  <li><strong>Traffic spikes create systemic pressure</strong> 
— traditional stacks drop connections or crash when overwhelmed</li>
                 </ul>
-              </div>
-              <div class="post__footer"><a class="more" 
href="/blog/apache-ignite-2-16-0.html">↓ Read all</a></div>
-            </article>
-            <article class="post">
-              <div class="post__header">
-                <h2><a 
href="/blog/apache-ignite-net-dynamic-linq.html">Dynamic LINQ performance and 
usability with Ignite.NET and System.Linq.Dynamic</a></h2>
-                <div>
-                  May 22, 2023 by Pavel Tupitsyn. Share in <a 
href="http://www.facebook.com/sharer.php?u=https://ignite.apache.org/blog/apache-ignite-net-dynamic-linq.html";>Facebook</a><span>,
 </span
-                  ><a href="http://twitter.com/home?status=Dynamic LINQ 
performance and usability with Ignite.NET and 
System.Linq.Dynamic%20https://ignite.apache.org/blog/apache-ignite-net-dynamic-linq.html";>Twitter</a>
-                </div>
-              </div>
-              <div class="post__content">
-                <p>Dynamically building database queries can be necessary for 
some use cases, such as UI-defined filtering. This can get challenging with 
LINQ frameworks like EF Core and Ignite.NET.</p>
-                <p><a 
href="https://ptupitsyn.github.io/Dynamic-LINQ-With-Ignite/";>Read 
More...</a></p>
-              </div>
-            </article>
-            <article class="post">
-              <div class="post__header">
-                <h2><a href="/blog/apache-ignite-2-13-0.html">Apache Ignite 
2.13.0: new Apache Calcite-based SQL engine</a></h2>
-                <div>
-                  April 28, 2022 by Nikita Amelchev. Share in <a 
href="http://www.facebook.com/sharer.php?u=https://ignite.apache.org/blog/apache-ignite-2-13-0.html";>Facebook</a><span>,
 </span
-                  ><a href="http://twitter.com/home?status=Apache Ignite 
2.13.0: new Apache Calcite-based SQL 
engine%20https://ignite.apache.org/blog/apache-ignite-2-13-0.html";>Twitter</a>
-                </div>
-              </div>
-              <div class="post__content">
-                <p>
-                  As of April 26, 2022, <a 
href="https://ignite.apache.org/";>Apache Ignite</a> 2.13 has been released. You 
can directly check the full list of resolved <a 
href="https://s.apache.org/x8u49";>Important JIRA tasks</a> but here
-                  let&apos;s briefly overview some valuable improvements.
-                </p>
-                <h4>This is a breaking change release: The legacy service grid 
implementation was removed.</h4>
-                <h3 id="new-apache-calcite-based-sql-engine">New Apache 
Calcite-based SQL engine</h3>
-                <p>We&apos;ve implemented a new experimental SQL engine based 
on Apache Calcite. Now it&apos;s possible to:</p>
+                <p><strong>The compounding effect</strong></p>
                 <ul>
-                  <li>Get rid of some <a 
href="https://cwiki.apache.org/confluence/display/IGNITE/IEP-37%3A+New+query+execution+engine#IEP37:Newqueryexecutionengine-Motivation";>H2
 limitations</a>;</li>
-                  <li><a 
href="https://cwiki.apache.org/confluence/display/IGNITE/IEP-37%3A+New+query+execution+engine#IEP37:Newqueryexecutionengine-Implementationdetails";>Optimize</a>
 some query execution.</li>
+                  <li>At 100 events per second, network latency of 2ms adds 
minimal overhead.</li>
+                  <li>At 10,000 events per second, that same 2ms latency 
creates a 20-second processing backlog within system boundaries.</li>
+                  <li>During traffic spikes (50,000+ events per second), 
traditional systems collapse entirely, dropping connections and losing data 
when they're needed most.</li>
                 </ul>
-                <p>The current H2-based engine has fundamental limitations. 
For example:</p>
+                <p>The math scales against you.</p>
+                <hr />
+                <h3>When Smart Choices Become Scaling Limits</h3>
+                <p><strong>Initial Architecture, works great at lower 
scale:</strong></p>
+                <pre class="mermaid">flowchart TB
+    subgraph "Event Processing"
+        Events[High-Volume Events<br/>10,000/sec]
+    end
+
+    subgraph "Multi-System Architecture"
+        Redis[(Cache<br/>Session Data<br/>2ms latency)]
+        PostgreSQL[(Relational DB<br/>Transaction Data<br/>5ms latency)]
+        Processing[Custom Processing<br/>Business Logic<br/>3ms latency]
+    end
+
+    Events --> Redis
+    Events --> PostgreSQL
+    Events --> Processing
+
+    Redis <-->|Sync Overhead| PostgreSQL
+    PostgreSQL <-->|Data Movement| Processing
+    Processing <-->|Cache Updates| Redis
+</pre>
+                <p><strong>What happens at scale</strong></p>
                 <ul>
-                  <li>some queries should be splitted into 2 phases (map 
subquery and reduce subquery), but some of them cannot be effectively executed 
in 2 phases.</li>
-                  <li>H2 is a third-party database product with not-ASF 
license.</li>
-                  <li>The optimizer and other internal things are not supposed 
to work in a distributed environment.</li>
-                  <li>It&apos;s hard to make Ignite-specific changes to the H2 
code, patches are often declined.</li>
+                  <li><strong>Network-latency tax:</strong> Every system hop 
adds milliseconds that compound</li>
+                  <li><strong>Synchronization delays:</strong> Keeping systems 
consistent creates processing queues</li>
+                  <li><strong>Memory overhead:</strong> Each system caches the 
same data in different formats</li>
+                  <li><strong>Consistency windows:</strong> Brief periods 
where systems show different data states</li>
                 </ul>
-              </div>
-              <div class="post__footer"><a class="more" 
href="/blog/apache-ignite-2-13-0.html">↓ Read all</a></div>
-            </article>
-            <article class="post">
-              <div class="post__header">
-                <h2><a href="/blog/apache-ignite-2-12-0.html">Apache Ignite 
2.12.0: CDC, Index Query API, Vulnerabilities Fixes</a></h2>
-                <div>
-                  January 14, 2022 by Nikita Amelchev. Share in <a 
href="http://www.facebook.com/sharer.php?u=https://ignite.apache.org/blog/apache-ignite-2-12-0.html";>Facebook</a><span>,
 </span
-                  ><a href="http://twitter.com/home?status=Apache Ignite 
2.12.0: CDC, Index Query API, Vulnerabilities 
Fixes%20https://ignite.apache.org/blog/apache-ignite-2-12-0.html";>Twitter</a>
-                </div>
-              </div>
-              <div class="post__content">
+                <hr />
+                <h3>The Hidden Cost of Multi-System Success</h3>
+                <p><strong>Data Movement Overhead:</strong></p>
+                <p>Your events don't just need processing, they need 
processing that maintains consistency across all systems.</p>
+                <p>Each event triggers:</p>
+                <ul>
+                  <li><strong>Cache lookup (Redis):</strong> ≈ 0.5 ms network 
+ processing</li>
+                  <li><strong>Transaction validation (PostgreSQL):</strong> ≈ 
2 ms network + disk I/O</li>
+                  <li><strong>Business-logic execution (Custom):</strong> ≈ 
1ms processing + data marshalling</li>
+                  <li><strong>Result synchronization (across 
systems):</strong> ≈ 3 ms coordination overhead</li>
+                </ul>
+                <p><strong>Minimum per-event cost ≈ 7 ms before business 
logic.</strong></p>
+                <p>At 10,000 events/s, you’d need 70 seconds of processing 
capacity just <strong>for data movement</strong> per real-time second!</p>
+                <hr />
+                <h3>The Performance Gap That Grows With Success</h3>
+                <h3>Why Traditional Options Fail</h3>
+                <p><strong>Option 1: Scale out each system</strong></p>
+                <ul>
+                  <li><strong>Strategy</strong>: Add cache clusters, database 
replicas, processing nodes</li>
+                  <li><strong>Result</strong>: More systems to coordinate, 
exponentially more complexity</li>
+                  <li><strong>Reality</strong>: Network overhead grows faster 
than processing capacity</li>
+                </ul>
+                <p><strong>Option 2: Custom optimization</strong></p>
+                <ul>
+                  <li><strong>Strategy</strong>: Build application-layer 
caching, custom consistency protocols</li>
+                  <li><strong>Result</strong>: Engineering team maintains 
complex, system-specific optimizations</li>
+                  <li><strong>Reality</strong>: Solutions don't generalize; 
each optimization creates technical debt</li>
+                </ul>
+                <p><strong>Option 3: Accept compromises</strong></p>
+                <ul>
+                  <li><strong>Strategy</strong>: Use async processing, 
eventual consistency, and accept delayed insights</li>
+                  <li><strong>Result</strong>: Business requirements 
compromised to fit architectural limitations</li>
+                  <li><strong>Reality</strong>: Competitive disadvantage as 
customer expectations grow</li>
+                </ul>
+                <hr />
+                <h3>The Critical Performance Gap</h3>
+                <table style="borderlicollapse: collapse; margin: 20px 0; 
width: 100%">
+                  <thead>
+                    <tr>
+                      <th style="border: 1px solid #ddd; padding: 12px; 
background-color: #f5f5f5; text-align: left">Component</th>
+                      <th style="border: 1px solid #ddd; padding: 12px; 
background-color: #f5f5f5; text-align: left">Optimized for</th>
+                      <th style="border: 1px solid #ddd; padding: 12px; 
background-color: #f5f5f5; text-align: left">Typical Latency</th>
+                    </tr>
+                  </thead>
+                  <tbody>
+                    <tr>
+                      <td style="border: 1px solid #ddd; padding: 
12px">Database</td>
+                      <td style="border: 1px solid #ddd; padding: 12px">ACID 
transactions</td>
+                      <td style="border: 1px solid #ddd; padding: 
12px">Milliseconds</td>
+                    </tr>
+                    <tr>
+                      <td style="border: 1px solid #ddd; padding: 
12px">Cache</td>
+                      <td style="border: 1px solid #ddd; padding: 12px">Access 
speed</td>
+                      <td style="border: 1px solid #ddd; padding: 
12px">Microseconds</td>
+                    </tr>
+                    <tr>
+                      <td style="border: 1px solid #ddd; padding: 
12px">Compute</td>
+                      <td style="border: 1px solid #ddd; padding: 
12px">Throughput</td>
+                      <td style="border: 1px solid #ddd; padding: 
12px">Minutes – hours</td>
+                    </tr>
+                  </tbody>
+                </table>
+                <p>Applications needing <strong>microsecond insights</strong> 
on <strong>millisecond transactions</strong> have no good options at scale in 
traditional architectures.</p>
                 <p>
-                  As of January 14, 2022, <a 
href="https://ignite.apache.org/";>Apache Ignite</a> 2.12 has been released. You 
can directly check the full list of resolved <a 
href="https://s.apache.org/0zyi2";>Important JIRA tasks</a> but here
-                  let&rsquo;s briefly overview some valuable improvements.
+                  During traffic spikes, traditional architectures either drop 
connections (data loss) or degrade performance (missed SLAs). High-velocity 
applications need intelligent flow control that guarantees stability under 
pressure
+                  while preserving data integrity.
                 </p>
-                <h3 id="vulnerability-updates">Vulnerability Updates</h3>
+                <hr />
+                <h3>Event Processing at Scale</h3>
+                <p><strong>Here's what traditional multi-system event 
processing costs:</strong></p>
+                <pre><code>// Traditional multi-system event processing
+long startTime = System.nanoTime();
+
+// 1. Cache lookup for session data
+String sessionData = redisClient.get("session:" + eventId);  // ~500μs network
+if (sessionData == null) {
+    sessionData = postgresDB.query("SELECT * FROM sessions WHERE id = ?", 
eventId);  // ~2ms fallback
+    redisClient.setex("session:" + eventId, 300, sessionData);  // ~300μs 
cache update
+}
+
+// 2. Transaction processing
+postgresDB.executeTransaction(tx -> {  // ~2-5ms transaction
+    tx.execute("INSERT INTO events VALUES (?, ?, ?)", eventId, userId, 
eventData);
+    tx.execute("UPDATE user_stats SET event_count = event_count + 1 WHERE 
user_id = ?", userId);
+});
+
+// 3. Custom processing with consistency coordination
+ProcessingResult result = customProcessor.process(eventData, sessionData);  // 
~1ms processing
+redisClient.setex("result:" + eventId, 600, result);  // ~300μs result caching
+
+// 4. Synchronization across systems
+ensureConsistency(eventId, sessionData, result);  // ~2-3ms coordination
+
+long totalTime = System.nanoTime() - startTime;
+// Total: 6-12ms per event (not including queuing delays)
+
+</code></pre>
+                <p><strong>Compound Effect at Scale:</strong></p>
+                <table style="border-collapse: collapse; margin: 20px 0; 
width: 100%">
+                  <thead>
+                    <tr>
+                      <th style="border: 1px solid #ddd; padding: 12px; 
background-color: #f5f5f5; text-align: left">Rate</th>
+                      <th style="border: 1px solid #ddd; padding: 12px; 
background-color: #f5f5f5; text-align: left">Required processing time / s</th>
+                    </tr>
+                  </thead>
+                  <tbody>
+                    <tr>
+                      <td style="border: 1px solid #ddd; padding: 12px">1,000 
events / s</td>
+                      <td style="border: 1px solid #ddd; padding: 12px">6–12 
s</td>
+                    </tr>
+                    <tr>
+                      <td style="border: 1px solid #ddd; padding: 12px">5,000 
events / s</td>
+                      <td style="border: 1px solid #ddd; padding: 12px">30–60 
s</td>
+                    </tr>
+                    <tr>
+                      <td style="border: 1px solid #ddd; padding: 12px">10,000 
events / s</td>
+                      <td style="border: 1px solid #ddd; padding: 12px">60–120 
s</td>
+                    </tr>
+                  </tbody>
+                </table>
+                <p><strong>The math doesn’t work:</strong> parallelism helps, 
but coordination overhead grows exponentially with system count.</p>
+                <hr />
+                <h3>Real-World Breaking Points</h3>
+                <ul>
+                  <li><strong>Financial services</strong>: Trading platforms 
hitting 10,000+ trades/second discover that compliance reporting delays impact 
trading decisions.</li>
+                  <li><strong>Gaming platforms</strong>: Multiplayer backends 
processing user actions find that leaderboard updates lag behind gameplay 
events.</li>
+                  <li><strong>IoT analytics</strong>: Manufacturing systems 
processing sensor data realize that anomaly detection arrives too late for 
preventive action.</li>
+                </ul>
+                <hr />
+                <h3>The Apache Ignite Alternative</h3>
+                <h3>Eliminating Multi-System Overhead</h3>
+                <pre class="mermaid">flowchart TB
+    subgraph "Event Processing"
+        Events[High-Volume Events<br/>10,000/sec]
+    end
+
+    subgraph "Apache Ignite Platform"
+        subgraph "Collocated Processing"
+            Memory[Memory-First Storage<br/>Optimized Access Times]
+            Transactions[MVCC Transactions<br/>ACID Guarantees]
+            Compute[Event Processing<br/>Where Data Lives]
+        end
+    end
+
+    Events --> Memory
+    Memory --> Transactions
+    Transactions --> Compute
+
+    Memory <-->|Minimal Copying| Transactions
+    Transactions <-->|Collocated| Compute
+    Compute <-->|Direct Access| Memory
+</pre>
+                <p><strong>Key difference:</strong> events process 
<strong>where the data lives</strong>, eliminating inter-system latency.</p>
+                <hr />
+                <h3>Apache Ignite Performance Reality Check</h3>
+                <p><strong>Here's the same event processing with integrated 
architecture:</strong></p>
+                <pre><code>// Apache Ignite integrated event processing
+try (IgniteClient client = 
IgniteClient.builder().addresses("cluster:10800").build()) {
+    // Single integrated transaction spanning cache, database, and compute
+    client.transactions().runInTransaction(tx -> {
+        // 1. Access session data (in memory, no network overhead)
+        Session session = client.tables().table("sessions")
+            .keyValueView().get(tx, Tuple.create().set("id", eventId));
+
+        // 2. Process event with ACID guarantees (same memory space)
+        client.sql().execute(tx, "INSERT INTO events VALUES (?, ?, ?)",
+                           eventId, userId, eventData);
+
+        // 3. Execute processing collocated with data
+        ProcessingResult result = client.compute().execute(
+            JobTarget.colocated("events", Tuple.create().set("id", eventId)),
+            EventProcessor.class, eventData);
+
+        // 4. Update derived data (same transaction, guaranteed consistency)
+        client.sql().execute(tx, "UPDATE user_stats SET event_count = 
event_count + 1 WHERE user_id = ?", userId);
+
+        return result;
+    });
+}
+// Result: microsecond-range event processing through integrated architecture
+</code></pre>
+                <p>Processing 10,000 events/s is achievable with integrated 
architecture eliminating network overhead.</p>
+                <hr />
+                <h3>The Unified Data-Access Advantage</h3>
+                <p><strong>Here's what eliminates the need for separate 
systems:</strong></p>
+                <pre><code>// The SAME data, THREE access paradigms, ONE system
+Table customerTable = client.tables().table("customers");
+
+// 1. Key-value access for cache-like performance
+Customer customer = customerTable.keyValueView()
+    .get(tx, Tuple.create().set("customer_id", customerId));
+
+// 2. SQL access for complex analytics
+ResultSet&lt;SqlRow&gt analytics = client.sql().execute(tx,
+    "SELECT segment, AVG(order_value) FROM customers WHERE region = ?", 
region);
+
+// 3. Record access for type-safe operations
+CustomerRecord record = customerTable.recordView()
+    .get(tx, new CustomerRecord(customerId));
+
+// All three: same schema, same data, same transaction model
+</code></pre>
+                <p><strong>Eliminates:</strong></p>
+                <ul>
+                  <li><strong>Cache API</strong> for cache operations</li>
+                  <li>Data movement during <strong>distributed joins</strong> 
for analytical queries</li>
+                  <li><strong>Custom mapping logic</strong> for type-safe 
access</li>
+                  <li><strong>Data synchronization</strong> between cache and 
database</li>
+                  <li><strong>Schema drift risks</strong> across different 
systems</li>
+                </ul>
+                <p><strong>Unified advantage:</strong> One schema, one 
transaction model, multiple access paths.</p>
+                <hr />
+                <h3>Apache Ignite Architecture Preview</h3>
+                <p>The ability to handle high-velocity events without 
multi-system overhead requires specific technical innovations:</p>
+                <ul>
+                  <li><strong>Memory-first storage</strong>: Event data lives 
in memory with optimized access times typically under 10 microseconds for 
cache-resident data</li>
+                  <li><strong>Collocated compute</strong>: Processing happens 
where data already exists, eliminating movement</li>
+                  <li><strong>Integrated transactions</strong>: ACID 
guarantees span cache, database, and compute operations</li>
+                  <li><strong>Minimal data copying</strong>: Events process 
against live data through collocated processing and direct memory access</li>
+                </ul>
+                <p>These innovations address the compound effects that make 
multi-system architectures unsuitable for high-velocity applications.</p>
+                <hr />
+                <h3>Business Impact of Architectural Evolution</h3>
+                <h3>Cost Efficiency</h3>
+                <ul>
+                  <li><strong>Reduced infrastructure</strong>: one platform 
instead of several</li>
+                  <li><strong>Lower network costs</strong>: eliminate 
inter-system bandwidth overhead</li>
+                  <li><strong>Simplified operations</strong>: fewer platforms 
to monitor, backup, and scale</li>
+                </ul>
+                <h3>Performance Gains</h3>
+                <ul>
+                  <li><strong>Microsecond latency</strong>: eliminates network 
overhead</li>
+                  <li><strong>Higher throughput</strong>: more events on 
existing hardware</li>
+                  <li><strong>Predictable scaling</strong>: consistent 
performance under load</li>
+                </ul>
+                <h3>Developer Experience</h3>
+                <ul>
+                  <li><strong>Single API</strong>: one model for all data 
operations</li>
+                  <li><strong>Consistent behavior</strong>: no synchronization 
anomalies</li>
+                  <li><strong>Faster delivery</strong>: one integrated system 
to test and debug</li>
+                </ul>
+                <hr />
+                <h3>The Architectural Evolution Decision</h3>
+                <p>Every successful application reaches this point: the 
architecture that once fueled growth now constrains it.</p>
+                <p><strong>The question isn't whether you'll hit multi-system 
scaling limits. It's how you'll evolve past them.</strong></p>
                 <p>
-                  The Apache Ignite versions lower than 2.11.1 are vulnerable 
to <a 
href="https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44832";>CVE-2021-44832</a>
 which is related to the <code>ignite-log4j2</code> module usage.
+                  <strong>Apache Ignite</strong> consolidates transactions, 
caching, and compute into a single, memory-first platform designed for 
high-velocity workloads. Instead of managing the compound complexity of 
coordinating multiple
+                  systems at scale, you consolidate core operations into a 
platform designed for high-velocity applications.
                 </p>
-                <p>The release also fixes 10+ CVE&rsquo;s of various modules. 
See <a 
href="https://ignite.apache.org/releases/ignite2/2.12.0/release_notes.html";>release
 notes</a> for more details.</p>
-                <h3 id="change-data-capture">Change Data Capture</h3>
+                <p>Your winning architecture doesn't have to become your 
scaling limit. It can evolve into the foundation for your next phase of 
growth.</p>
+                <hr />
+                <br />
                 <p>
-                  Change Data Capture (<a 
href="https://en.wikipedia.org/wiki/Change_data_capture";>CDC</a>) is a data 
processing pattern used to asynchronously receive entries that have been 
changed on the local node so that action can be
-                  taken using the changed entry.
+                  <em>Return next Tuesday for Part 2, where we examine how 
Apache Ignite’s memory-first architecture enables optimized event processing 
while maintaining durability, forming the basis for true high-velocity 
performance.</em>
                 </p>
               </div>
-              <div class="post__footer"><a class="more" 
href="/blog/apache-ignite-2-12-0.html">↓ Read all</a></div>
             </article>
-          </section>
-          <section class="blog__footer">
-            <ul class="pagination">
-              <li><a class="current" href="/blog/ignite">1</a></li>
-              <li><a class="item" href="/blog/ignite/1/">2</a></li>
-              <li><a class="item" href="/blog/ignite/2/">3</a></li>
-            </ul>
+            <section class="blog__footer">
+              <ul class="pagination post_page">
+                <li><a href="/blog/apache">apache</a></li>
+                <li><a href="/blog/ignite">ignite</a></li>
+              </ul>
+            </section>
           </section>
         </main>
         <aside class="blog__sidebar">
@@ -640,6 +777,7 @@
     ></a>
     <script src="/js/vendor/hystmodal/hystmodal.min.js"></script>
     <script src="/js/vendor/smoothscroll.js"></script>
+    <script src="/js/vendor/mermaid/mermaid.min.js"></script>
     <script src="/js/main.js?ver=0.9"></script>
   </body>
 </html>
diff --git a/blog/apache/index.html b/blog/apache/index.html
index 4f4fe9c3c2..8aaa795479 100644
--- a/blog/apache/index.html
+++ b/blog/apache/index.html
@@ -341,6 +341,22 @@
       <div class="blog__content">
         <main class="blog_main">
           <section class="blog__posts">
+            <article class="post">
+              <div class="post__header">
+                <h2><a 
href="/blog/apache-ignite-3-architecture-part-1.html">Apache Ignite 3 
Architecture Series: Part 1 — When Multi-System Complexity Compounds at 
Scale</a></h2>
+                <div>
+                  November 25, 2025 by Michael Aglietti. Share in <a 
href="http://www.facebook.com/sharer.php?u=https://ignite.apache.org/blog/apache-ignite-3-architecture-part-1.html";>Facebook</a><span>,
 </span
+                  ><a href="http://twitter.com/home?status=Apache Ignite 3 
Architecture Series: Part 1 — When Multi-System Complexity Compounds at 
Scale%20https://ignite.apache.org/blog/apache-ignite-3-architecture-part-1.html";>Twitter</a>
+                </div>
+              </div>
+              <div class="post__content">
+                <p>
+                  Apache Ignite 3 shows what really happens once your <em>good 
enough</em> multi-system setup starts cracking under high-volume load. This 
piece breaks down why the old stack stalls at scale and how a unified, 
memory-first
+                  architecture removes the latency tax entirely.
+                </p>
+              </div>
+              <div class="post__footer"><a class="more" 
href="/blog/apache-ignite-3-architecture-part-1.html">↓ Read all</a></div>
+            </article>
             <article class="post">
               <div class="post__header">
                 <h2><a 
href="/blog/schema-design-for-distributed-systems-ai3.html"> Schema Design for 
Distributed Systems: Why Data Placement Matters</a></h2>
@@ -525,28 +541,6 @@
               </div>
               <div class="post__footer"><a class="more" 
href="/blog/apache-ignite-essentials-series-for.html">↓ Read all</a></div>
             </article>
-            <article class="post">
-              <div class="post__header">
-                <h2><a href="/blog/apache-ignite-2-3-more.html">Apache Ignite 
2.3 - More SQL and Persistence Capabilities</a></h2>
-                <div>
-                  November 1, 2017 by Denis Magda. Share in <a 
href="http://www.facebook.com/sharer.php?u=https://ignite.apache.org/blog/apache-ignite-2-3-more.html";>Facebook</a><span>,
 </span
-                  ><a href="http://twitter.com/home?status=Apache Ignite 2.3 - 
More SQL and Persistence 
Capabilities%20https://ignite.apache.org/blog/apache-ignite-2-3-more.html";>Twitter</a>
-                </div>
-              </div>
-              <div class="post__content">
-                <p>Putting aside the regular bug fixes and performance 
optimizations, the Apache Ignite 2.3 release brings new SQL capabilities and 
Ignite persistence improvements that are worth mentioning.</p>
-                <p></p>
-                <h3>SQL</h3>
-                <p></p>
-                <p>Let&apos;s start with SQL first.</p>
-                <p>Apache Ignite users have consistently told us that despite 
all of Ignite&rsquo;s SQL capabilities, it&rsquo;s been at times challenging 
trying to figure out how to start using Ignite as an SQL database.</p>
-                <p>
-                  This was mostly caused by scattered documentation pages, 
lack of &ldquo;getting started&rdquo; guides and tutorials. We&rsquo;ve 
remedied this oversight! All related SQL knowledge has been curated in a
-                  <a href="https://apacheignite-sql.readme.io/docs"; 
target="_blank">single documentation domain</a>.
-                </p>
-              </div>
-              <div class="post__footer"><a class="more" 
href="/blog/apache-ignite-2-3-more.html">↓ Read all</a></div>
-            </article>
           </section>
           <section class="blog__footer">
             <ul class="pagination">
@@ -657,6 +651,7 @@
     ></a>
     <script src="/js/vendor/hystmodal/hystmodal.min.js"></script>
     <script src="/js/vendor/smoothscroll.js"></script>
+    <script src="/js/vendor/mermaid/mermaid.min.js"></script>
     <script src="/js/main.js?ver=0.9"></script>
   </body>
 </html>
diff --git a/blog/ignite/index.html b/blog/ignite/index.html
index 6c21066391..b632ccfde4 100644
--- a/blog/ignite/index.html
+++ b/blog/ignite/index.html
@@ -341,6 +341,22 @@
       <div class="blog__content">
         <main class="blog_main">
           <section class="blog__posts">
+            <article class="post">
+              <div class="post__header">
+                <h2><a 
href="/blog/apache-ignite-3-architecture-part-1.html">Apache Ignite 3 
Architecture Series: Part 1 — When Multi-System Complexity Compounds at 
Scale</a></h2>
+                <div>
+                  November 25, 2025 by Michael Aglietti. Share in <a 
href="http://www.facebook.com/sharer.php?u=https://ignite.apache.org/blog/apache-ignite-3-architecture-part-1.html";>Facebook</a><span>,
 </span
+                  ><a href="http://twitter.com/home?status=Apache Ignite 3 
Architecture Series: Part 1 — When Multi-System Complexity Compounds at 
Scale%20https://ignite.apache.org/blog/apache-ignite-3-architecture-part-1.html";>Twitter</a>
+                </div>
+              </div>
+              <div class="post__content">
+                <p>
+                  Apache Ignite 3 shows what really happens once your <em>good 
enough</em> multi-system setup starts cracking under high-volume load. This 
piece breaks down why the old stack stalls at scale and how a unified, 
memory-first
+                  architecture removes the latency tax entirely.
+                </p>
+              </div>
+              <div class="post__footer"><a class="more" 
href="/blog/apache-ignite-3-architecture-part-1.html">↓ Read all</a></div>
+            </article>
             <article class="post">
               <div class="post__header">
                 <h2><a 
href="/blog/schema-design-for-distributed-systems-ai3.html"> Schema Design for 
Distributed Systems: Why Data Placement Matters</a></h2>
@@ -503,32 +519,6 @@
               </div>
               <div class="post__footer"><a class="more" 
href="/blog/apache-ignite-2-13-0.html">↓ Read all</a></div>
             </article>
-            <article class="post">
-              <div class="post__header">
-                <h2><a href="/blog/apache-ignite-2-12-0.html">Apache Ignite 
2.12.0: CDC, Index Query API, Vulnerabilities Fixes</a></h2>
-                <div>
-                  January 14, 2022 by Nikita Amelchev. Share in <a 
href="http://www.facebook.com/sharer.php?u=https://ignite.apache.org/blog/apache-ignite-2-12-0.html";>Facebook</a><span>,
 </span
-                  ><a href="http://twitter.com/home?status=Apache Ignite 
2.12.0: CDC, Index Query API, Vulnerabilities 
Fixes%20https://ignite.apache.org/blog/apache-ignite-2-12-0.html";>Twitter</a>
-                </div>
-              </div>
-              <div class="post__content">
-                <p>
-                  As of January 14, 2022, <a 
href="https://ignite.apache.org/";>Apache Ignite</a> 2.12 has been released. You 
can directly check the full list of resolved <a 
href="https://s.apache.org/0zyi2";>Important JIRA tasks</a> but here
-                  let&rsquo;s briefly overview some valuable improvements.
-                </p>
-                <h3 id="vulnerability-updates">Vulnerability Updates</h3>
-                <p>
-                  The Apache Ignite versions lower than 2.11.1 are vulnerable 
to <a 
href="https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44832";>CVE-2021-44832</a>
 which is related to the <code>ignite-log4j2</code> module usage.
-                </p>
-                <p>The release also fixes 10+ CVE&rsquo;s of various modules. 
See <a 
href="https://ignite.apache.org/releases/ignite2/2.12.0/release_notes.html";>release
 notes</a> for more details.</p>
-                <h3 id="change-data-capture">Change Data Capture</h3>
-                <p>
-                  Change Data Capture (<a 
href="https://en.wikipedia.org/wiki/Change_data_capture";>CDC</a>) is a data 
processing pattern used to asynchronously receive entries that have been 
changed on the local node so that action can be
-                  taken using the changed entry.
-                </p>
-              </div>
-              <div class="post__footer"><a class="more" 
href="/blog/apache-ignite-2-12-0.html">↓ Read all</a></div>
-            </article>
           </section>
           <section class="blog__footer">
             <ul class="pagination">
@@ -640,6 +630,7 @@
     ></a>
     <script src="/js/vendor/hystmodal/hystmodal.min.js"></script>
     <script src="/js/vendor/smoothscroll.js"></script>
+    <script src="/js/vendor/mermaid/mermaid.min.js"></script>
     <script src="/js/main.js?ver=0.9"></script>
   </body>
 </html>
diff --git a/blog/index.html b/blog/index.html
index 0df8df2c2e..99128007e9 100644
--- a/blog/index.html
+++ b/blog/index.html
@@ -341,6 +341,22 @@
       <div class="blog__content">
         <main class="blog_main">
           <section class="blog__posts">
+            <article class="post">
+              <div class="post__header">
+                <h2><a 
href="/blog/apache-ignite-3-architecture-part-1.html">Apache Ignite 3 
Architecture Series: Part 1 — When Multi-System Complexity Compounds at 
Scale</a></h2>
+                <div>
+                  November 25, 2025 by Michael Aglietti. Share in <a 
href="http://www.facebook.com/sharer.php?u=https://ignite.apache.org/blog/apache-ignite-3-architecture-part-1.html";>Facebook</a><span>,
 </span
+                  ><a href="http://twitter.com/home?status=Apache Ignite 3 
Architecture Series: Part 1 — When Multi-System Complexity Compounds at 
Scale%20https://ignite.apache.org/blog/apache-ignite-3-architecture-part-1.html";>Twitter</a>
+                </div>
+              </div>
+              <div class="post__content">
+                <p>
+                  Apache Ignite 3 shows what really happens once your <em>good 
enough</em> multi-system setup starts cracking under high-volume load. This 
piece breaks down why the old stack stalls at scale and how a unified, 
memory-first
+                  architecture removes the latency tax entirely.
+                </p>
+              </div>
+              <div class="post__footer"><a class="more" 
href="/blog/apache-ignite-3-architecture-part-1.html">↓ Read all</a></div>
+            </article>
             <article class="post">
               <div class="post__header">
                 <h2><a 
href="/blog/schema-design-for-distributed-systems-ai3.html"> Schema Design for 
Distributed Systems: Why Data Placement Matters</a></h2>
@@ -503,32 +519,6 @@
               </div>
               <div class="post__footer"><a class="more" 
href="/blog/apache-ignite-2-13-0.html">↓ Read all</a></div>
             </article>
-            <article class="post">
-              <div class="post__header">
-                <h2><a href="/blog/apache-ignite-2-12-0.html">Apache Ignite 
2.12.0: CDC, Index Query API, Vulnerabilities Fixes</a></h2>
-                <div>
-                  January 14, 2022 by Nikita Amelchev. Share in <a 
href="http://www.facebook.com/sharer.php?u=https://ignite.apache.org/blog/apache-ignite-2-12-0.html";>Facebook</a><span>,
 </span
-                  ><a href="http://twitter.com/home?status=Apache Ignite 
2.12.0: CDC, Index Query API, Vulnerabilities 
Fixes%20https://ignite.apache.org/blog/apache-ignite-2-12-0.html";>Twitter</a>
-                </div>
-              </div>
-              <div class="post__content">
-                <p>
-                  As of January 14, 2022, <a 
href="https://ignite.apache.org/";>Apache Ignite</a> 2.12 has been released. You 
can directly check the full list of resolved <a 
href="https://s.apache.org/0zyi2";>Important JIRA tasks</a> but here
-                  let&rsquo;s briefly overview some valuable improvements.
-                </p>
-                <h3 id="vulnerability-updates">Vulnerability Updates</h3>
-                <p>
-                  The Apache Ignite versions lower than 2.11.1 are vulnerable 
to <a 
href="https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44832";>CVE-2021-44832</a>
 which is related to the <code>ignite-log4j2</code> module usage.
-                </p>
-                <p>The release also fixes 10+ CVE&rsquo;s of various modules. 
See <a 
href="https://ignite.apache.org/releases/ignite2/2.12.0/release_notes.html";>release
 notes</a> for more details.</p>
-                <h3 id="change-data-capture">Change Data Capture</h3>
-                <p>
-                  Change Data Capture (<a 
href="https://en.wikipedia.org/wiki/Change_data_capture";>CDC</a>) is a data 
processing pattern used to asynchronously receive entries that have been 
changed on the local node so that action can be
-                  taken using the changed entry.
-                </p>
-              </div>
-              <div class="post__footer"><a class="more" 
href="/blog/apache-ignite-2-12-0.html">↓ Read all</a></div>
-            </article>
           </section>
           <section class="blog__footer">
             <ul class="pagination">
@@ -640,6 +630,7 @@
     ></a>
     <script src="/js/vendor/hystmodal/hystmodal.min.js"></script>
     <script src="/js/vendor/smoothscroll.js"></script>
+    <script src="/js/vendor/mermaid/mermaid.min.js"></script>
     <script src="/js/main.js?ver=0.9"></script>
   </body>
 </html>

Reply via email to