jenwitteng commented on issue #37114:
URL: https://github.com/apache/superset/issues/37114#issuecomment-3748538046
**Case /r/n**
writing cache
> query_dict={'apply_fetch_values_predicate': False, 'columns':
[{'timeGrain': 'P1M', 'columnType': 'BASE_AXIS', 'sqlExpression':
'booking_datetime_cast', 'label': 'booking_datetime_cast', 'expressionType':
'SQL'}], 'extras': {'time_grain_sqla': 'P1M', 'having': '', 'where': ''},
'filter': [{'col': 'whitelabel_name', 'op': 'IN', 'val': ['RMNectar']}, {'col':
'booking_datetime_cast', 'op': 'TEMPORAL_RANGE', 'val':
'DATEADD(DATETIME("now"), -7, day) : now'}], 'from_dttm':
datetime.datetime(2026, 1, 6, 9, 1, 55), 'granularity': None,
'inner_from_dttm': None, 'inner_to_dttm': None, 'is_rowcount': False,
'is_timeseries': False, 'metrics': [{'aggregate': None, 'column': None,
'datasourceWarning': False, 'expressionType': 'SQL', 'hasCustomLabel': True,
'label': '< 16% Spread', 'optionName': 'metric_d7ocbaa3aq_k1i0msjgad',
'sqlExpression': "SUM(CASE \r\n WHEN cast(original_total_spread_percentage
as float) < 0.16\r\n THEN CASE\r\n WHEN tbl_source = 'PPA' THEN
hotel_no
_of_room\r\n WHEN tbl_source = 'TR' THEN 1\r\n END\r\n
END)"}, {'aggregate': None, 'column': None, 'datasourceWarning': False,
'expressionType': 'SQL', 'hasCustomLabel': True, 'label': '16% - 20% Spread',
'optionName': 'metric_wqmh9wx1z2_ymlki2up3dn', 'sqlExpression': "SUM(CASE \r\n
WHEN cast(original_total_spread_percentage as float) >= 0.16\r\n AND
cast(original_total_spread_percentage as float) < 0.2\r\n THEN CASE\r\n
WHEN tbl_source = 'PPA' THEN hotel_no_of_room\r\n WHEN
tbl_source = 'TR' THEN 1\r\n END\r\n END)"}, {'aggregate': None,
'column': None, 'datasourceWarning': False, 'expressionType': 'SQL',
'hasCustomLabel': True, 'label': '20% - 25% Spread', 'optionName':
'metric_5egn3fc8zja_1b16x3da4md', 'sqlExpression': "SUM(CASE \r\n WHEN
cast(original_total_spread_percentage as float) >= 0.20\r\n AND
cast(original_total_spread_percentage as float) < 0.25\r\n THEN CASE\r\n
WH
EN tbl_source = 'PPA' THEN hotel_no_of_room\r\n WHEN tbl_source =
'TR' THEN 1\r\n END\r\n END)"}, {'aggregate': None, 'column':
None, 'datasourceWarning': False, 'expressionType': 'SQL', 'hasCustomLabel':
True, 'label': '25% - 30% Spread', 'optionName':
'metric_loo72lfax59_rta69r6ml5', 'sqlExpression': "SUM(CASE \r\n WHEN
cast(original_total_spread_percentage as float) >= 0.25\r\n AND
cast(original_total_spread_percentage as float) < 0.30\r\n THEN CASE\r\n
WHEN tbl_source = 'PPA' THEN hotel_no_of_room\r\n WHEN
tbl_source = 'TR' THEN 1\r\n END\r\n END)"}, {'aggregate': None,
'column': None, 'datasourceWarning': False, 'expressionType': 'SQL',
'hasCustomLabel': True, 'label': '>= 30% Spread', 'optionName':
'metric_46nrvjqbi3t_cnxe56gcyl8', 'sqlExpression': "SUM(CASE \r\n WHEN
cast(original_total_spread_percentage as float) >= 0.30\r\n THEN CASE\r\n
WHEN tbl_source = 'PPA' THEN hotel_no_o
f_room\r\n WHEN tbl_source = 'TR' THEN 1\r\n END\r\n
END)"}], 'order_desc': True, 'orderby': [({'aggregate': None, 'column': None,
'datasourceWarning': False, 'expressionType': 'SQL', 'hasCustomLabel': True,
'label': '< 16% Spread', 'optionName': 'metric_d7ocbaa3aq_k1i0msjgad',
'sqlExpression': "SUM(CASE \r\n WHEN cast(original_total_spread_percentage
as float) < 0.16\r\n THEN CASE\r\n WHEN tbl_source = 'PPA' THEN
hotel_no_of_room\r\n WHEN tbl_source = 'TR' THEN 1\r\n
END\r\n END)"}, False)], 'row_limit': 10000, 'row_offset': 0,
'series_columns': [], 'series_limit': 0, 'series_limit_metric': None,
'to_dttm': datetime.datetime(2026, 1, 13, 9, 1, 55), 'time_shift': None,
'conditional_formatting': None, 'comments': None}
reading cache
> query_dict={'apply_fetch_values_predicate': False, 'columns':
[{'timeGrain': 'P1M', 'columnType': 'BASE_AXIS', 'sqlExpression':
'booking_datetime_cast', 'label': 'booking_datetime_cast', 'expressionType':
'SQL'}], 'extras': {'where': '', 'having': '', 'time_grain_sqla': 'P1M'},
'filter': [{'val': ['RMNectar'], 'op': 'IN', 'col': 'whitelabel_name'}, {'val':
'DATEADD(DATETIME("now"), -7, day) : now', 'op': 'TEMPORAL_RANGE', 'col':
'booking_datetime_cast'}], 'from_dttm': datetime.datetime(2026, 1, 6, 9, 2, 8),
'granularity': None, 'inner_from_dttm': None, 'inner_to_dttm': None,
'is_rowcount': False, 'is_timeseries': False, 'metrics': [{'aggregate': None,
'column': None, 'datasourceWarning': False, 'expressionType': 'SQL',
'hasCustomLabel': True, 'label': '< 16% Spread', 'optionName':
'metric_d7ocbaa3aq_k1i0msjgad', 'sqlExpression': "SUM(CASE \r\n WHEN
cast(original_total_spread_percentage as float) < 0.16\r\n THEN CASE\r\n
WHEN tbl_source = 'PPA' THEN hotel_no_
of_room\r\n WHEN tbl_source = 'TR' THEN 1\r\n END\r\n
END)"}, {'aggregate': None, 'column': None, 'datasourceWarning': False,
'expressionType': 'SQL', 'hasCustomLabel': True, 'label': '16% - 20% Spread',
'optionName': 'metric_wqmh9wx1z2_ymlki2up3dn', 'sqlExpression': "SUM(CASE \r\n
WHEN cast(original_total_spread_percentage as float) >= 0.16\r\n AND
cast(original_total_spread_percentage as float) < 0.2\r\n THEN CASE\r\n
WHEN tbl_source = 'PPA' THEN hotel_no_of_room\r\n WHEN
tbl_source = 'TR' THEN 1\r\n END\r\n END)"}, {'aggregate': None,
'column': None, 'datasourceWarning': False, 'expressionType': 'SQL',
'hasCustomLabel': True, 'label': '20% - 25% Spread', 'optionName':
'metric_5egn3fc8zja_1b16x3da4md', 'sqlExpression': "SUM(CASE \r\n WHEN
cast(original_total_spread_percentage as float) >= 0.20\r\n AND
cast(original_total_spread_percentage as float) < 0.25\r\n THEN CASE\r\n
WHE
N tbl_source = 'PPA' THEN hotel_no_of_room\r\n WHEN tbl_source =
'TR' THEN 1\r\n END\r\n END)"}, {'aggregate': None, 'column':
None, 'datasourceWarning': False, 'expressionType': 'SQL', 'hasCustomLabel':
True, 'label': '25% - 30% Spread', 'optionName':
'metric_loo72lfax59_rta69r6ml5', 'sqlExpression': "SUM(CASE \r\n WHEN
cast(original_total_spread_percentage as float) >= 0.25\r\n AND
cast(original_total_spread_percentage as float) < 0.30\r\n THEN CASE\r\n
WHEN tbl_source = 'PPA' THEN hotel_no_of_room\r\n WHEN
tbl_source = 'TR' THEN 1\r\n END\r\n END)"}, {'aggregate': None,
'column': None, 'datasourceWarning': False, 'expressionType': 'SQL',
'hasCustomLabel': True, 'label': '>= 30% Spread', 'optionName':
'metric_46nrvjqbi3t_cnxe56gcyl8', 'sqlExpression': "SUM(CASE \r\n WHEN
cast(original_total_spread_percentage as float) >= 0.30\r\n THEN CASE\r\n
WHEN tbl_source = 'PPA' THEN hotel_no_of
_room\r\n WHEN tbl_source = 'TR' THEN 1\r\n END\r\n
END)"}], 'order_desc': True, 'orderby': [({'aggregate': None, 'column': None,
'datasourceWarning': False, 'expressionType': 'SQL', 'hasCustomLabel': True,
'label': '< 16% Spread', 'optionName': 'metric_d7ocbaa3aq_k1i0msjgad',
'sqlExpression': "SUM(CASE \n WHEN cast(original_total_spread_percentage
as float) < 0.16\n THEN CASE\n WHEN tbl_source = 'PPA' THEN
hotel_no_of_room\n WHEN tbl_source = 'TR' THEN 1\n END\n
END)"}, False)], 'row_limit': 10000, 'row_offset': 0, 'series_columns': [],
'series_limit': 0, 'series_limit_metric': None, 'to_dttm':
datetime.datetime(2026, 1, 13, 9, 2, 8), 'time_shift': None,
'conditional_formatting': None, 'comments': None}
**case jinja template**
writing cache
> query_dict={'apply_fetch_values_predicate': False, 'columns':
[{'timeGrain': 'P3M', 'columnType': 'BASE_AXIS', 'sqlExpression':
'merge_request_merged_at', 'label': 'merge_request_merged_at',
'expressionType': 'SQL'}], 'extras': {'having': '', 'where': '',
'time_grain_sqla': 'P3M'}, 'filter': [{'val': ['Yes'], 'op': 'IN', 'col':
'yes_no_condition'}, {'val': ['No'], 'op': 'IN', 'col': 'is_intern_included'},
{'val': ['No'], 'op': 'IN', 'col': 'is_freezing_period_included'}, {'val':
['No'], 'op': 'IN', 'col': 'is_inactivity_included'}, {'val': [False], 'op':
'IN', 'col': 'true_false_bool_condition'}, {'val': 75, 'op': '==', 'col':
'percentile'}, {'val': ['System owner'], 'op': 'IN', 'col': 'calculated_by'},
{'val': 'datetrunc(dateadd(datetime("today"), -1, quarter), quarter) :
datetime("today")', 'op': 'TEMPORAL_RANGE', 'col': 'merge_request_merged_at'}],
'from_dttm': datetime.datetime(2025, 10, 1, 0, 0), 'granularity': None,
'inner_from_dttm': None, 'inner_to_dttm': None, 'is_rowco
unt': False, 'is_timeseries': False, 'metrics': [{'aggregate': None, 'column':
None, 'datasourceWarning': True, 'expressionType': 'SQL', 'hasCustomLabel':
True, 'label': 'MLTC', 'optionName': 'metric_25y7eu1dboh_x7xp5sc9x2',
'sqlExpression': "{% set no_of_mrs = filter_values('percentile')[0]
%}\n\nAPPROXIMATE_PERCENTILE((office_hour_mltc/(60*9)) USING PARAMETERS
percentile={{ no_of_mrs }}/100)"}], 'order_desc': True, 'orderby':
[({'aggregate': None, 'column': None, 'datasourceWarning': True,
'expressionType': 'SQL', 'hasCustomLabel': True, 'label': 'MLTC', 'optionName':
'metric_25y7eu1dboh_x7xp5sc9x2', 'sqlExpression': "{% set no_of_mrs =
filter_values('percentile')[0]
%}\n\nAPPROXIMATE_PERCENTILE((office_hour_mltc/(60*9)) USING PARAMETERS
percentile={{ no_of_mrs }}/100)"}, False)], 'row_limit': 10000, 'row_offset':
0, 'series_columns': [], 'series_limit': 0, 'series_limit_metric': None,
'to_dttm': datetime.datetime(2026, 1, 14, 0, 0), 'time_shift': None,
'conditional_formatting': N
one, 'comments': None}
reading cache
> query_dict={'apply_fetch_values_predicate': False, 'columns':
[{'timeGrain': 'P3M', 'columnType': 'BASE_AXIS', 'sqlExpression':
'merge_request_merged_at', 'label': 'merge_request_merged_at',
'expressionType': 'SQL'}], 'extras': {'time_grain_sqla': 'P3M', 'where': '',
'having': ''}, 'filter': [{'val': ['Yes'], 'col': 'yes_no_condition', 'op':
'IN'}, {'val': ['No'], 'col': 'is_intern_included', 'op': 'IN'}, {'val':
['No'], 'col': 'is_freezing_period_included', 'op': 'IN'}, {'val': ['No'],
'col': 'is_inactivity_included', 'op': 'IN'}, {'val': [False], 'col':
'true_false_bool_condition', 'op': 'IN'}, {'val': 75, 'col': 'percentile',
'op': '=='}, {'val': ['System owner'], 'col': 'calculated_by', 'op': 'IN'},
{'val': 'datetrunc(dateadd(datetime("today"), -1, quarter), quarter) :
datetime("today")', 'col': 'merge_request_merged_at', 'op': 'TEMPORAL_RANGE'}],
'from_dttm': datetime.datetime(2025, 10, 1, 0, 0), 'granularity': None,
'inner_from_dttm': None, 'inner_to_dttm': None, 'is_rowco
unt': False, 'is_timeseries': False, 'metrics': [{'aggregate': None, 'column':
None, 'datasourceWarning': True, 'expressionType': 'SQL', 'hasCustomLabel':
True, 'label': 'MLTC', 'optionName': 'metric_25y7eu1dboh_x7xp5sc9x2',
'sqlExpression': "{% set no_of_mrs = filter_values('percentile')[0]
%}\n\nAPPROXIMATE_PERCENTILE((office_hour_mltc/(60*9)) USING PARAMETERS
percentile={{ no_of_mrs }}/100)"}], 'order_desc': True, 'orderby':
[({'aggregate': None, 'column': None, 'datasourceWarning': True,
'expressionType': 'SQL', 'hasCustomLabel': True, 'label': 'MLTC', 'optionName':
'metric_25y7eu1dboh_x7xp5sc9x2', 'sqlExpression':
'\n\nAPPROXIMATE_PERCENTILE((office_hour_mltc/(60*9)) USING PARAMETERS
percentile=75/100)'}, False)], 'row_limit': 10000, 'row_offset': 0,
'series_columns': [], 'series_limit': 0, 'series_limit_metric': None,
'to_dttm': datetime.datetime(2026, 1, 14, 0, 0), 'time_shift': None,
'conditional_formatting': None, 'comments': None}
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]