On Tue, 8 Apr 2025, Ursula Hermann wrote:

> Dear List,
> There is a problem with this paragraph, because the has not the right height?
> 
> \starttext
> \switchtobodyfont[termes, 7.70pt]
> \definetextbackground[MyBackground][
>   location=paragraph,
>   background=color,
>   backgroundcolor=greenyellow, x=F1E788,
>   leftoffset=.8\bodyfontsize,
>   rightoffset=.8\bodyfontsize,
>   topoffset=.8\bodyfontsize,
>   bottomoffset=.8\bodyfontsize,
>   frame=off,
>   width=.8\textwidth]
> \startMyBackground
> \usemodule[amsl]
> \startnarrow[left=2.90mm, right=2.90mm][left, right]
> {\bf Lebesque-integrierbare Funktionen}\par
> \definehspace[ein 1,2][0.25em]
> Wenn ($ a$,$ b$) $\subseteq$ $\reals$ ein Intervall bezeichnet, dann ist die 
> Menge $L$$^\uparrow$(($a$,$b$)) die Menge der Funktionen, die fast über- all 
> Grenzwert einer monoton wachsenden Folge von Trep
> penfunktionen ($\varphi_k$) sind für die  die Folge ($\int^b_a$ $\varphi_k$ 
> ($x$) $dx$) konvergiert. Für $f$  $\in$
> \startformula
> \quad \int[method=auto] {f(x) \dd 
> x}_{a}^{b}=\lim_{k\to\infty}\int[method=auto]_{a}^{b}\varphi_k (x) dx).
> \stopformula
> \stopMyBackground
> \stoptext

Wolfgang has already answered your main question but I would like to point out 
that the way you are writing math will give wrong horizontal spacing. The 
standard method is to use $ to start math mode and then $ again to stop math 
mode: so one would write

Wenn $(a,b) \subseteq \reals$ ein .... Menge $L^{\uparrow}((a,b))$ .... Folge 
($\int^b_a \varphi_k(x) \dd x$) .... etc.

Aditya
___________________________________________________________________________________
If your question is of interest to others as well, please add an entry to the 
Wiki!

maillist : ntg-context@ntg.nl / 
https://mailman.ntg.nl/mailman3/lists/ntg-context.ntg.nl
webpage  : https://www.pragma-ade.nl / https://context.aanhet.net (mirror)
archive  : https://github.com/contextgarden/context
wiki     : https://wiki.contextgarden.net
___________________________________________________________________________________

Reply via email to