
<div/>
<div >
</div>
exporting

xml and epub
from context

1 Introduction

There is a pretty long tradition of typesettingmath with TEX and it looks like this programwill dominate

for many more years. Even if we move to the web, the simple fact that support for MathML in some

browsers is subtoptimal will drive those who want a quality document to use pdf instead.

I’m writing this in 2014, at a time that xml is widespread. The idea of xml is that you code your data

in a very structured way, so that it can be manipulated and (if needed) validated. Text has always

been a target for xml which is a follow-up to sgml that was in use by publishers. Because html is less

structured (and also quite tolerant with respect to end tags) we prefer to use xhtml but unfortunately

support for that is less widespread.

Interesting is that documents are probably among the more complex targets of the xml format. The

reason is that unless the author restricts him/herself or gets restricted by the publisher, tag-abuse can

happen. At Pragma ADE we mostly deal with education related xml and it’s not always easy to come

up with something that suits the specific needs of the educational concept behind a school method.

Even if we start out nice and clean, eventually we end up with a poluted source, often with additonal

structure needed to satisfy the tools used for conversion.

We have been supporting xml from the day it showed up and most of our projects involve xml in one

way or the other. That doesn’t mean that we don’t use TEX for coding documents. This manual is for

instance a regular TEX document. In many ways a structured TEX document is much more convenient

to edit, especially if one wants to add a personal touch and do some local makeup. On the other hand,

diverting from standard structure commands makes the document less suitable for other output than

pdf. There is simply no final solution for coding your document, it’s mostly a matter of taste.

So we have a dilemma: if we want to have multiple output, frozen pdf as well as less controlled html

output, we can best code in xml, but when we want to code comfortably we’d like to use TEX. There

are other ways, like markdown, that can be converted to intermediate formats like TEX, but that is

only suitable for simple documents: the more advanced documents get, the more one has to escape

from the boundaries of (any) document encoding, and then often TEX is not a bad choice. There is a

good reason why TEX survived for so long.

It is for this reason that in ConTEXt MkIV we can export the content in a reasonable structured way

to xml. Of course we assume a structured document. It started out as an experiment because it was

relatively easy to implement, and it is now an integral component.

2 The output

The regular output is an xml file but as we have some more related data it gets organized in a tree.

We also export a few variants. An example is given below:

./test-export

./test-export/images

./test-export/images/...

./test-export/styles

./test-export/styles/test-defaults.css

./test-export/styles/test-images.css

./test-export/styles/test-styles.css

./test-export/styles/test-templates.css

./test-export/test-raw.xml

./test-export/test-raw.lua

./test-export/test-tag.xhtml

./test-export/test-div.xhtml

Say that we have this input:

\setupbackend

[export=yes]

\starttext

\startsection[title=First]

\startitemize

\startitem one \stopitem

\startitem two \stopitem

\stopitemize

\stopsection

\stoptext

The main export ends up in the test-raw.xml export file and looks as follows (we leave out the pre-

amble and style references):

<document> <!-- with some attributes -->

<section detail="section" chain="section" level="3">

<sectionnumber>1</sectionnumber>

<sectiontitle>First</sectiontitle>

<sectioncontent>

<itemgroup detail="itemize" chain="itemize" symbol="1" level="1">

<item>

<itemtag><m:math ..><m:mo>•</m:mo></m:math></itemtag>

<itemcontent>one</itemcontent>

</item>

<item>

<itemtag><m:math ..><m:mo>•</m:mo></m:math></itemtag>

<itemcontent>two</itemcontent>

</item>

</itemgroup>

</sectioncontent>

</section>

</document>

This file refers to the stylesheets and therefore renders quite okay in a browser like FireFox that can

handle xhtml with arbitrary tags.

The detail attribute tells us what instance of the element is used. Normally the chain attribute is

the same but it can have more values. For instance, if we have:

\definefloat[graphic][graphics][figure]

.....

\startplacefigure[title=First]

\externalfigure[cow.pdf]

\stopplacefigure

.....

\startplacegraphic[title=Second]

\externalfigure[cow.pdf]

\stopplacegraphic

we get this:

<float detail="figure" chain="figure">

<floatcontent>...</floatcontent>

<floatcaption>...</floatcaption>

</float>

<float detail="graphic" chain="figure graphic">

<floatcontent>...</floatcontent>

<floatcaption>...</floatcaption>

</float>

This makes it possible to style specific categories of floats by using a (combination of) detail and/or

chain as filter.

The body of the test-tag.xhtml file looks similar but it is slightly more tuned for viewing. For instance

hyperlinks are converted to a way that css and browsers like more. Keep in mind that the raw file can

be the base for conversion to other formats, so that one stays closest to the original structure.

The test-div.xhtml file is even more tuned for viewing in browsers as it completely does away with

specific tags. We explicitly don’t map onto native html elements because that would make all look

messy and horrible, if only because there seldom is a relation between those elements and the original.

One can always transform one of the export formats to pure html tags if needed.

<body>

<div class="document">

<div class="section" id="aut-1">

<div class="sectionnumber">1</div>

<div class="sectiontitle">First</div>

<div class="sectioncontent">

<div class="itemgroup itemize symbol-1">

<div class="item">

<div class="itemtag"><m:math ...><m:mo>•</m:mo></m:math></div>

<div class="itemcontent">one</div>

</div>

<div class="item">

<div class="itemtag"><m:math ...><m:mo>•</m:mo></m:math></div>

<div class="itemcontent">two</div>

</div>

</div>

<div class="float figure">

<div class="floatcontent">...</div></div>

<div class="floatcaption">...></div>

</div>

<div class="float figure graphic">

<div class="floatcontent">...</div></div>

<div class="floatcaption">...></div>

</div>

</div>

</div>

</body>

The also default css file can deal with tags as well as classes. The additional styles file contains

definitions of so called highlights. In the ConTEXt source one can better use explicit named highlights

instead of local font and color switches because these properties are then exported to the css. The

images style defines all used images. The templates file lists all the used elements and can be used

as a starting point for additional css styling.

Keep inmind that the export isnotmeant as a one-to-one visual representation. It represents structure

so that it can be converted to whatever you like.

In order to get an export you must start your document with:

\setupbackend

[export=yes]

So, we trigger a specific (extra) backend. In addition you can set up the export:

\setupexport

[svgstyle=test-basic-style.tex,

cssfile=test-extras.css,

hyphen=yes,

width=60em]

The hyphen option will also export hyphenation information so that the text can be nicely justified. The

svgstyle option can be used to specify a file where math is setup, normally this would only contain a

bodyfont setup and this option is only needed if you want to create an ePub file afterwards that has

math represented as svg.

The value of cssfile ends up as style reference in the exported files. You can also pass a comma

separates list of names (between curly braces). These entries come after those of the automatically

generated css files so you need to be aware of default properties.

3 Images

Inclusion of images is done in an indirect way. Each image gets an entry in a special image related

stylesheet and then gets referred to by id. Some extra information is written to a status file so that the

script that creates ePub files can deal with the right conversion, for instance from pdf to svg. Because

we can refer to specific pages in a pdf file, this subsystem deals with that too. Images are expected

in an images subpath and because in css the references are relative to the path where the stylesheet

resides, we use ../images instead. If you do some postprocessing on the files or relocate them you

need to keep in mind that you might have to change these paths in the image related css file.

4 Epub files

At the end of a run with exporting enabled you will get a message to the console that tells you how to

generate an ePub file. For instance:

mtxrun --script epub --make --purge test

This will create a tree with the following organization:

./test-epub

./test-epub/META-INF

./test-epub/META-INF/container.xml

./test-epub/OEBPS

./test-epub/OEBPS/content.opf

./test-epub/OEBPS/toc.ncx

./test-epub/OEBPS/nav.xhtml

./test-epub/OEBPS/cover.xhtml

./test-epub/OEBPS/test-div.xhtml

./test-epub/OEBPS/images

./test-epub/OEBPS/images/...

./test-epub/styles

./test-epub/styles/test-defaults.css

./test-epub/styles/test-images.css

./test-epub/styles/test-styles.css

./test-epub/mimetype

Images will be moved to this tree as well and if needed they will be converted into for instance svg.

Converted pdf files can have a page-<number> in their name when a specific page has been used.

You can pass the option --svgmath in which case math will be converted to svg. The main reason

for this feature is that we found out that MathML support in browsers will not be as widespread as

expected. The best bet is FireFox which natively supports it. The Chrome browser had it for a while

but it got dropped and math is now delegated to JavaScript and friends. In Internet Explorer MathML

should work (but I need to test that again). This conversion mechanism is kind of interesting: one

enters TEX math, then gets MathML in the export, and that gets rendered by TEX again, but now as

standalone snippet that then gets converted to svg and embedded in the result.

5 Styles

One can argue that we should use native html elements but we don’t have a nice guaranteed consistent

mapping onto that so it makes no sense to do so. Instead we rely on either explicit tags with details

and chains or divisions with classes that combine the tag, detail and chain. The tagged variant has

some more attributes and those that use a fixed set of values become classes in the division variant.

Also, once we start going the (for instance) H1, H2, etc. route we’re lost when we have more levels

than that or use a different structure. If an H3 can reflect several levels it makes no sense to use it.

The same is true for other tags: if a list is not really a list than tagging it with LI is counterproductive.

We’re often dealing with very complex documents so basic html tagging is rather meaningless then.

If you look at the division variant (the one used for ePub too) you will notice that there are no empty

elements but div ones with a comment as content. This is needed because otherwise they get ignored

which for instance makes table cells invisible.

The relation between detail and chain (reflected in class) can best be seen from the next example.

\definefloat[myfloata]

\definefloat[myfloatb][myfloatbs][figure]

\definefloat[myfloatc][myfloatcs][myfloatb]

This creates two new float instances. The first inherits from the main float settings, but can have its

own properties. The second example inherits from the figure so in fact it is part of a chain. The third

one has a longer chain.

<float detail="myfloata">...</float>

<float detail="myfloatb" chain="figure">...</float>

<float detail="myfloatc" chain="figure myfloatb">...</float>

In a css style you can now configure tags, details, and chains as well as classes (we only show a few

possibilities):

div.float.myfloata { } float[detail='myfloata'] { }

div.float.myfloatb { } float[detail='myfloatb'] { }

div.float.figure { } float[detail='figure'] { }

div.float.figure.myfloatb { } float[chain~='figure'][detail='myfloata'] { }

div.myfloata { } *[detail='myfloata'] { }

div.myfloatb { } *[detail='myfloatb'] { }

div.figure { } *[chain~='figure'] { }

div.figure.myfloatb { } *[chain~='figure'][detail='myfloatb'] { }

The default styles cover some basics but if you’re serious about the export or want to use the ePub

then it makes sense to overload some of it and/or provide additional styling. You can find enough

about css and it’s options on the internet.

6 Coding

The default output reflects the structure present in the document. If this is not enough you can add

your own structure.

\startelement[question]

Is this right?

\stopelement

You can also pass attributes:

\startelement[question][level=difficult]

Is this right?

\stopelement

But these will only be exported when you also say:

\setupexport

[properties=yes]

You can create a namespace. The following will generate attributes like my-level.

\setupexport

[properties=my-]

In most cases it makes more sense to use highlights:

\definehighlight

[important]

[style=bold]

This has the advantage that the style and color are exported to a special css file.

Headers and footers and other content that is part of the page builder is not exported. If your document

has coverpages you might want to hide them too. The same is true when you create special chapter

title rendering that have as side effect that content ends up in the page stream. If something shows

up that you want to, you can wrap it in an ignore element:

\startelement[ignore]

Don't export this.

\stopelement

