I was surprised to see that numarray.mlab.cov is returning a rank-0 complex number when given two 1D arrays as inputs rather than the standard 2x2 covariance array I am used to seeing. Is this a feature or a bug?
In [2]: import numarray.mlab as nam In [3]: x = nam.rand(10) In [4]: y = nam.rand(10) In [5]: nam.cov(x, y) Out[5]: array((0.014697855954587828+0j)) In [6]: import numpy.oldnumeric.mlab as npm In [7]: x = npm.rand(10) In [8]: y = npm.rand(10) In [9]: npm.cov(x, y) Out[9]: array([[ 0.13243082, 0.0520454 ], [ 0.0520454 , 0.07435816]]) In [10]: import numarray In [11]: numarray.__version__ Out[11]: '1.3.3' In [12]: import numpy In [13]: numpy.__version__ Out[13]: '1.0b2.dev2999' ------------------------------------------------------------------------- Using Tomcat but need to do more? Need to support web services, security? Get stuff done quickly with pre-integrated technology to make your job easier Download IBM WebSphere Application Server v.1.0.1 based on Apache Geronimo http://sel.as-us.falkag.net/sel?cmd=lnk&kid=120709&bid=263057&dat=121642 _______________________________________________ Numpy-discussion mailing list Numpy-discussion@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/numpy-discussion