14.03.2021, 00:06, "Todd" <toddr...@gmail.com>:
Ideally float64 uses 64 bits for each number while float16 uses 16 bits. 64/16=4. However, there is some additional overhead. This overhead makes up a large portion of small arrays, but becomes negligible as the array gets bigger.On Sat, Mar 13, 2021, 16:01 <klark--k...@yandex.ru> wrote:Dear colleagues!Size of np.float16(1) is 26Size of np.float64(1) is 3232 / 26 = 1.23Since memory is limited I have a question after this code:import numpy as npimport sysa1 = np.ones(1, dtype='float16')b1 = np.ones(1, dtype='float64')div_1 = sys.getsizeof(b1) / sys.getsizeof(a1)# div_1 = 1.06_______________________________________________a2 = np.ones(10, dtype='float16')b2 = np.ones(10, dtype='float64')div_2 = sys.getsizeof(b2) / sys.getsizeof(a2)# div_2 = 1.51a3 = np.ones(100, dtype='float16')b3 = np.ones(100, dtype='float64')div_3 = sys.getsizeof(b3) / sys.getsizeof(a3)# div_3 = 3.0Size of np.float64 numpy arrays is four times more than for np.float16.Is it possible to minimize the difference close to 1.23?
NumPy-Discussion mailing list
NumPy-Discussion@python.org
https://mail.python.org/mailman/listinfo/numpy-discussion
_______________________________________________
NumPy-Discussion mailing list
NumPy-Discussion@python.org
https://mail.python.org/mailman/listinfo/numpy-discussion
_______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@python.org https://mail.python.org/mailman/listinfo/numpy-discussion