So is it right that 100 arrays of one element is smaller than one array with size of 100 elements?

14.03.2021, 00:06, "Todd" <toddr...@gmail.com>:
Ideally float64 uses 64 bits for each number while float16 uses 16 bits.  64/16=4.  However, there is some additional overhead.  This overhead makes up a large portion of small arrays, but becomes negligible as the array gets bigger.

On Sat, Mar 13, 2021, 16:01 <klark--k...@yandex.ru> wrote:
Dear colleagues!
 
Size of np.float16(1) is 26
Size of np.float64(1) is 32
32 / 26 = 1.23
 
Since memory is limited I have a question after this code:
 
   import numpy as np
   import sys
 
   a1 = np.ones(1, dtype='float16')
   b1 = np.ones(1, dtype='float64')
   div_1 = sys.getsizeof(b1) / sys.getsizeof(a1)
   # div_1 = 1.06
 
   a2 = np.ones(10, dtype='float16')
   b2 = np.ones(10, dtype='float64')
   div_2 = sys.getsizeof(b2) / sys.getsizeof(a2)    
   # div_2 = 1.51
 
   a3 = np.ones(100, dtype='float16')
   b3 = np.ones(100, dtype='float64')
   div_3 = sys.getsizeof(b3) / sys.getsizeof(a3)
   # div_3 = 3.0
Size of np.float64 numpy arrays is four times more than for np.float16.
Is it possible to minimize the difference close to 1.23?
_______________________________________________
NumPy-Discussion mailing list
NumPy-Discussion@python.org
https://mail.python.org/mailman/listinfo/numpy-discussion

_______________________________________________
NumPy-Discussion mailing list
NumPy-Discussion@python.org
https://mail.python.org/mailman/listinfo/numpy-discussion




_______________________________________________
NumPy-Discussion mailing list
NumPy-Discussion@python.org
https://mail.python.org/mailman/listinfo/numpy-discussion

Reply via email to