• Short answer:

It's because
>>> f64_info.max - f64_info.min
inf

• Long answer:

linspace(a,b,n) tries to calculate the step by (b-a)/n and fails at (b-a).

You need to either
– split your range into two parts and then glue them back:
np.r_[np.linspace(f64_info.min, 0, 5), np.linspace(0, f64_info.max, 5)[1:]]

– or select a range that fits into float64:
np.linspace(f64_info.min/2, f64_info.max/2, 10)

– or select np.float128 as a dtype for linspace (linux/macos only):
np.linspace(np.float128(f64_info.min), np.float128(f64_info.max), 10)

Best regards,
Lev


On Wed, Dec 29, 2021 at 8:01 PM Sebastian Gurovich <seb...@gmail.com> wrote:

> Could it be you need to get a handle on the "epsilon machine"?
>
> On Wed, 29 Dec 2021, 9:21 am , <alejandro.giacome...@gmail.com> wrote:
>
>> I am getting an interesting result, and I'm wondering if anyone would
>> care to give me some intuition of why.
>>
>> The example is simple enough, I want to get a range of values that are
>> representable by a type:
>>
>> ```python
>> f64_info = np.finfo(np.float64)
>> valid_range = np.linspace(
>>     start=f64_info.min, stop=f64_info.max, num=10
>> )
>> valid_range => array([            nan,             inf,             inf,
>>            inf,
>>                    inf,             inf,             inf,             inf,
>>                    inf, 1.79769313e+308])
>> ```
>>
>> The minimum value is representable by the type, I can see it:
>>
>> ```python
>> f64_info.min => -1.7976931348623157e+308
>> ```
>>
>> I thought that maybe the valid range cannot start with the minimun value,
>> so I've tried a few alternatives:
>>
>> ```python
>>
>> valid_range = np.linspace(
>>     start=f64_info.min + f64_info.eps, stop=f64_info.max, num=10
>> )
>> valid_range => array([            nan,             inf,             inf,
>>            inf,
>>                    inf,             inf,             inf,             inf,
>>                    inf, 1.79769313e+308])
>>
>>
>> valid_range = np.linspace(
>>     start=f64_info.min + f64_info.tiny, stop=f64_info.max, num=10
>> )
>> valid_range => array([            nan,             inf,             inf,
>>            inf,
>>                    inf,             inf,             inf,             inf,
>>                    inf, 1.79769313e+308])
>> ```
>>
>> I thought maybe the range is too wide, but I can do this:
>>
>> ```python
>> valid_range = np.linspace(
>>     start=0, stop=f64_info.max, num=10
>> )
>> valid_range => array([0.00000000e+000, 1.99743682e+307, 3.99487363e+307,
>> 5.99231045e+307,
>>                    7.98974727e+307, 9.98718408e+307, 1.19846209e+308,
>> 1.39820577e+308,
>>                    1.59794945e+308, 1.79769313e+308])
>>
>> ...
>>
>> valid_range = np.linspace(
>>     start=f64_info.tiny, stop=f64_info.max, num=10
>> )
>> valid_range => array([2.22507386e-308, 1.99743682e+307, 3.99487363e+307,
>> 5.99231045e+307,
>>                    7.98974727e+307, 9.98718408e+307, 1.19846209e+308,
>> 1.39820577e+308,
>>                    1.59794945e+308, 1.79769313e+308])
>>
>> ...
>>
>> f32_info = np.finfo(np.float32)
>> valid_range = np.linspace(
>>     start=f32_info.tiny, stop=f32_info.max, num=10, dtype=np.float32,
>> )
>> valid_range => array([1.1754944e-38, 3.7809150e+37, 7.5618299e+37,
>> 1.1342745e+38,
>>                    1.5123660e+38, 1.8904575e+38, 2.2685490e+38,
>> 2.6466405e+38,
>>                    3.0247320e+38, 3.4028235e+38], dtype=float32)
>>
>> ```
>>
>> I know that linear space is arbitrary, and perhaps not that useful. In
>> fact this is valid:
>>
>> ```python
>> valid_range = np.logspace(
>>     start=f64_info.minexp, stop=f64_info.maxexp, num=10, base=2,
>> endpoint=False
>> )
>> valid_range => array([2.22507386e-308, 8.67124674e-247, 3.37923704e-185,
>> 1.31690901e-123,
>>            5.13207368e-062, 2.00000000e+000, 7.79412037e+061,
>> 3.03741562e+123,
>>            1.18369915e+185, 4.61294681e+246])
>> ```
>>
>> But I'm still confused on why linear space is invalid
>>
>> Thanks!
>> _______________________________________________
>> NumPy-Discussion mailing list -- numpy-discussion@python.org
>> To unsubscribe send an email to numpy-discussion-le...@python.org
>> https://mail.python.org/mailman3/lists/numpy-discussion.python.org/
>> Member address: seb...@gmail.com
>>
> _______________________________________________
> NumPy-Discussion mailing list -- numpy-discussion@python.org
> To unsubscribe send an email to numpy-discussion-le...@python.org
> https://mail.python.org/mailman3/lists/numpy-discussion.python.org/
> Member address: lev.maxi...@gmail.com
>
_______________________________________________
NumPy-Discussion mailing list -- numpy-discussion@python.org
To unsubscribe send an email to numpy-discussion-le...@python.org
https://mail.python.org/mailman3/lists/numpy-discussion.python.org/
Member address: arch...@mail-archive.com

Reply via email to