On 13 Nov 2007, at 9:43 AM, Geoffrey Zhu wrote: > On Nov 13, 2007 2:37 AM, David Cournapeau <[EMAIL PROTECTED] > u.ac.jp> wrote: >> Geoffrey Zhu wrote: >>> Pointer problems are usually random... ... > The original MSI version hangs on numpy.test() if I open IDLE and type > > import numpy > numpy.test() > > If I try the OP's test first, once it hang on "from numpy.linalg > import eig" and the other time it ran successfully. After it ran > successfully, it ran numpy.test() successfully, too. > > As you said, it is random.
I have also been having random problems with the latest numpy from svn built on an Intel core 2 Duo Linux box running in 64 bit mode under Red Hat 3.4.6-8 with the gcc 3.4.6 20060404 and ATLAS 3.8.0. I am having a problem with numpy.linalg.eigh and complex Hermitian matrices. Randomly, I get seemingly correct answers, and then eigenvectors full of Nan's (though not completely. The first row the the eigenvectors seem to be numbers, but incorrect.) Sometimes, I can stop just after the error with pdb and "play". Calling eigh from the debugger sometimes gives a correct answer, and then other times gives eigenvalues and eigenvectors full of Nan's (not completely full mind you). For example: (Pdb) p numpy.linalg.eigh(HH) (array([-50.50589438, -45.86305013, -40.56713543, -35.57216233, 38.1497506 , 40.17291371, 43.35773763, 46.59527636, 49.42413434, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN]), array([[-0.00072424 +0.j, -0.00136655 +0.j, 0.00200233 +0.j, ..., 0.00000000 +0.j, 0.00000000 +0.j, 0.00000000 +0.j], [ NaN NaNj, NaN NaNj, NaN NaNj, ..., NaN NaNj, NaN NaNj, NaN NaNj], [ NaN NaNj, NaN NaNj, NaN NaNj, ..., NaN NaNj, NaN NaNj, NaN NaNj], ..., [ NaN NaNj, NaN NaNj, NaN NaNj, ..., NaN NaNj, NaN NaNj, NaN NaNj], [ NaN NaNj, NaN NaNj, NaN NaNj, ..., NaN NaNj, NaN NaNj, NaN NaNj], [ NaN NaNj, NaN NaNj, NaN NaNj, ..., NaN NaNj, NaN NaNj, NaN NaNj]])) (Pdb) p numpy.linalg.eigh(HH) (array([-51.06208813, -48.50332834, -48.49643331, -46.25814405, -46.25813858, -44.33668063, -44.33668063, -42.73548661, -42.73548661, -41.45454929, -41.45454929, -40.49386126, -40.49386126, -39.85344006, -39.85344006, -39.53308677, -39.53308677, 37.91885011, 37.91885011, 38.2392034 , 38.2392034 , 38.8796246 , 38.8796246 , 39.84031263, 39.84031263, 41.12124995, 41.12124995, 42.72244397, 42.72244398, 44.64390192, 44.6439074 , 46.88219666, 46.88909168, 49.44785148]), array([[ -5.28060016e-04 +0.00000000e+00j, -3.92271866e-05 +0.00000000e+00j, 7.72453920e-04 +0.00000000e +00j, ..., -3.36896226e-01 +0.00000000e+00j, 6.28651296e-02 +0.00000000e+00j, -2.42202473e-01 +0.00000000e+00j], [ 1.48818848e-03 +2.78190640e-04j, 1.06069959e-03 +1.98279117e-04j, -1.88322135e-03 -3.52035081e-04j, ..., 2.86677919e-01 +5.35893907e-02j, -1.77188491e-01 -3.31222694e-02j, 2.38244862e-01 +4.45356831e-02j], [ -2.14234988e-03 -8.29950766e-04j, -2.44246082e-03 -9.46214364e-04j, 1.92200953e-03 +7.44590459e-04j, ..., -1.92999931e-01 -7.47685718e-02j, 2.55119386e-01 +9.88337767e-02j, -2.26238355e-01 -8.76452055e-02j], ..., [ 2.06281453e-01 -1.27724068e-01j, -2.32614835e-01 +1.44029008e-01j, -1.75975052e-01 +1.08959139e-01j, ..., 1.75246553e-03 -1.08508072e-03j, 2.22700685e-03 -1.37890426e-03j, 1.95336925e-03 -1.20947504e-03j], [ -2.26004880e-01 +8.75547569e-02j, 1.68085319e-01 -6.51165996e-02j, 2.71949658e-01 -1.05353859e-01j, ..., -1.78646965e-03 +6.92082029e-04j, -1.00620547e-03 +3.89806076e-04j, -1.41173185e-03 +5.46907831e-04j], [ 2.38078516e-01 -4.45045876e-02j, -6.17947313e-02 +1.15514373e-02j, -3.31159928e-01 +6.19045191e-02j, ..., 7.59301424e-04 -1.41938035e-04j, 3.85592692e-05 -7.20797663e-06j, 5.19068791e-04 -9.70307734e-05j]])) Here is the version info (Everything build from scratch, numpy from svn): >>> sys.version '2.5.1 (r251:54863, Nov 10 2007, 00:44:16) \n[GCC 3.4.6 20060404 (Red Hat 3.4.6-8)]' >>> numpy.version.version '1.0.5.dev4427' >>> scipy.version.version '0.7.0.dev3511' Using ATLAS-3.8.0. This is extremely annoying, and difficult to reproduce. I will try recompiling with some different versions and see if I can reproduce the problem. Running numpy.test() does *not* fail... Michael. _______________________________________________ Numpy-discussion mailing list Numpy-discussion@scipy.org http://projects.scipy.org/mailman/listinfo/numpy-discussion