On Tue, May 6, 2008 at 10:03 AM, Timothy Hochberg <[EMAIL PROTECTED]> wrote: > Why don't you just roll your own? > > >>> def nans(shape, dtype=float): > ... a = np.empty(shape, dtype) > ... a.fill(np.nan) > ... return a > ... > >>> nans([3,4]) > array([[ NaN, NaN, NaN, NaN], > [ NaN, NaN, NaN, NaN], > [ NaN, NaN, NaN, NaN]])
I learn a lot from this list. I didn't know about fill. Looks like it is much faster than adding nan. >> timeit nans0((500,500)) 10 loops, best of 3: 30.5 ms per loop >> timeit nans1((500,500)) 1000 loops, best of 3: 956 µs per loop def nans0(shape, dtype=float): a = np.ones(shape, dtype) a += np.nan return a def nans1(shape, dtype=float): a = np.empty(shape, dtype) a.fill(np.nan) No need to roll my own. I'll smoke yours. return a _______________________________________________ Numpy-discussion mailing list Numpy-discussion@scipy.org http://projects.scipy.org/mailman/listinfo/numpy-discussion