Hello, I am using numpy in conjunction with pyTables. The data that I read in from pyTables seem to have the following dtype:
p = hdf5.root.myTable.read() p.__class__ <type 'numpy.ndarray'> p[0].__class__ <type 'numpy.void'> p.dtype dtype([('time', '<f4'), ('obs1', '<f4'), ('obs2', '<f8'), ('obs3', '<f4')]) p.shape (61230,) The manner in which I access a particular column is p['time'] or p['obs1']. I have a couple of questions regarding this data structure: 1) how do I restructure the array into a 61230 x 4 array that can be indexed using [r,c] notation? 2) What kind of dtype is pyTables using? How do I create a similar array that can be indexed by a named column? I tried various ways: a = array([[1,2],[3,4]], dtype=dtype([('obs1','<f4'),('obs2','<f4')])) --------------------------------------------------------------------------- <type 'exceptions.TypeError'> Traceback (most recent call last) p:\AsiaDesk\johngu\projects\deltaForce\<ipython console> in <module>() <type 'exceptions.TypeError'>: expected a readable buffer object I did find some documentation about array type descriptors when reading from files... it seems like these array types are specific to arrays created when reading from some sort of file / buffer? Any help is appreciated. Thanks! John
_______________________________________________ Numpy-discussion mailing list Numpy-discussion@scipy.org http://projects.scipy.org/mailman/listinfo/numpy-discussion