On Wednesday 22 July 2009 17:16:31 Ralf Gommers wrote: > Examples where min/max probably does not do what you want, and > find_common_type does: > > In [49]: max(float, float32) > Out[49]: <type 'numpy.float32'> > In [50]: find_common_type([], [float, float32]) > Out[50]: dtype('float64')
I don't understand the following behaviour: In [5]: numpy.find_common_type([float32,int32],[]) Out[5]: dtype('float32') In [6]: numpy.find_common_type([int32,float32],[]) Out[6]: dtype('int32') In both cases, I would actually expect float64 to be the answer (since int32 does not "fit into" float32). And I wonder why it depends on the order? When I actually try the same with arrays, I get float64 as expected: In [8]: a = numpy.array([1,2,3], int32) In [9]: b = numpy.array([1,2,3], float32) In [10]: a + b Out[10]: array([ 2., 4., 6.]) In [11]: b + a Out[11]: array([ 2., 4., 6.]) Is this a known bug in numpy 1.3.0, or am I missing something? Have a nice day! Hans _______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion