Here is an example, this does something a extra at the end but shows how the bins can be used.
Regards Alex Baker. from scipy.stats import norm r = norm.rvs(size=10000) import numpy as np p, bins = np.histogram(r, width, normed=True) db = bins[1]-bins[0] cdf = np.cumsum(p*db) from pylab import figure, show fig = figure() ax = fig.add_subplot(111) ax.bar(bins[:-1], cdf, width=0.8*db) show() o = [] rates = [] for r in np.arange(0, max(bins), db): G = max(np.cumsum([bin for bin in bins if bin > r])) L = min(np.cumsum([bin for bin in bins if bin < r])) o.append(abs(G/L)) rates.append(r) Mobile: 07788 872118 Blog: www.alexfb.com -- All science is either physics or stamp collecting. 2009/8/27 Tim Michelsen <timmichel...@gmx-topmail.de> > Hello, > I need some advice on histograms. > If I interpret the documentation [1, 2] for numpy.histogram correctly, the > result of the function is a count of the occurences sorted into each bin. > > (n, bins) = numpy.histogram(v, bins=50, normed=1) > > But how can I apply another function on these values stacked in each bin? > Like summing them up or building averages? > > Thanks, > Timmie > > [1] > http://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html > [2] > > http://www.scipy.org/Tentative_NumPy_Tutorial#head-aa75ec76530ff51a2e98071adb7224a4b793519e > > _______________________________________________ > NumPy-Discussion mailing list > NumPy-Discussion@scipy.org > http://mail.scipy.org/mailman/listinfo/numpy-discussion >
_______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion