This seems to work now, but I'm wondering if Charles is correct, that
inheritance isn't such a great idea here.
The advantage of inheritance is I don't have to implement forwarding all the
functions, a pretty big advantage. (I wonder if there is some way to do some
of these as a generic 'mixin'?)
I was concerned that using a vectorize function in __array_wrap__ would
result in a recursive call to __array_wrap__ (and in some earlier version I
did get infinite recursion). This version doesn't seem to have a problem,
although I don't know why.
Any thoughts? Code attached.
import numpy as np
def rnd (x, frac_bits, _max):
x1 = x >> (frac_bits-1)
if (x1 == _max):
return x1 >> 1
else:
return (x1+1) >> 1
def shift_left (x, bits):
return x << bits
def shift_right (x, bits):
return x >> bits
def shiftup_or_rnddn (x, bits, _max, rnd_policy):
if (bits > 0):
return shift_left (x, bits)
elif (bits < 0):
return rnd_policy (x, -bits, _max)
else:
return x
def clip (x, _min, _max):
if x > _max:
return _max
elif x < _min:
return _min
else:
return x
def throw (x, _min, _max):
import exceptions
class fixed_pt_overflow (exceptions.Exception):
pass
if x > _max or x < _min:
raise fixed_pt_overflow
return x
class fixed_pt (object):
def get_max(self):
if self.is_signed:
return (~(self.base_type(-1) << (self.total_bits-1)))
else:
return (~(self.base_type (-1) << self.total_bits))
def get_min(self):
if self.is_signed:
return ((self.base_type(-1) << (self.total_bits-1)))
else:
return 0
def __init__ (self, int_bits, frac_bits, val, scale=True, base_type=int, rnd_policy=rnd, overflow_policy=clip, is_signed=True):
self.is_signed = is_signed
self.int_bits = int_bits
self.frac_bits = frac_bits
self.base_type = base_type
self.total_bits = int_bits + frac_bits
self.rnd_policy = rnd_policy
self._max = self.get_max ()
self._min = self.get_min ()
self.overflow_policy = overflow_policy
if scale:
self.val = self.overflow_policy (self.base_type (shiftup_or_rnddn (val, frac_bits, self._max, self.rnd_policy)), self._min, self._max)
def as_double (self):
return np.ldexp (self.val, -self.frac_bits)
def as_base (self):
return shiftup_or_rnddn (self.val, -self.frac_bits, self._max, self.rnd_policy)
def __repr__(self):
return "[%s <%s,%s>]" % (self.val, self.int_bits, self.frac_bits)
def get_max(is_signed, base_type, total_bits):
if is_signed:
return (~(base_type(-1) << (total_bits-1)))
else:
return (~(base_type (-1) << total_bits))
def get_min(is_signed, base_type, total_bits):
if is_signed:
return ((base_type(-1) << (total_bits-1)))
else:
return 0
class fixed_pt_array(np.ndarray):
def __new__(cls, input_array, int_bits, frac_bits, scale=True, base_type=int, rnd_policy=rnd, overflow_policy=clip, is_signed=True):
# Input array is an already formed ndarray instance
# We first cast to be our class type
obj = np.asarray(input_array, dtype=base_type).view(cls)
# add the new attribute to the created instance
obj.int_bits = int_bits
obj.frac_bits = frac_bits
obj.rnd_policy = rnd_policy
obj.overflow_policy = overflow_policy
obj.is_signed = is_signed
obj.scale = scale
obj.base_type = base_type
obj.total_bits = int_bits + frac_bits
obj._max = get_max(is_signed, base_type, obj.total_bits)
obj._min = get_min(is_signed, base_type, obj.total_bits)
if scale:
def _scale (val):
return overflow_policy (base_type (shiftup_or_rnddn (val, frac_bits, obj._max, rnd_policy)), obj._min, obj._max)
vecfunc = np.vectorize (_scale)
obj = vecfunc (obj)
# Finally, we must return the newly created object:
return obj
def __array_finalize__(self,obj):
# reset the attribute from passed original object
if hasattr (obj, 'int_bits'):
self.int_bits = obj.int_bits
self.frac_bits = obj.frac_bits
self.rnd_policy = obj.rnd_policy
self.overflow_policy = obj.overflow_policy
self.is_signed = obj.is_signed
self.base_type = obj.base_type
self.total_bits = obj.total_bits
self._max = obj._max
self._min = obj._min
## self._max = get_max(self.is_signed, self.base_type, self.total_bits)
## self._min = get_min(self.is_signed, self.base_type, self.total_bits)
# We do not need to return anything
## def __getitem__ (self, index):
## return fp.fixed_pt_int64_clip (self.int_bits, self.frac_bits, int(np.ndarray.__getitem__(self, index)))
def as_double (self):
import math
def _as_double_1 (x):
return math.ldexp (x, -self.frac_bits)
vecfunc = np.vectorize (_as_double_1)
return np.array (vecfunc (self), dtype=float)
def as_base (self):
def _shiftup_or_rnddn (x):
return shiftup_or_rnddn (x, -self.frac_bits, self._max, self.rnd_policy)
vecfunc = np.vectorize (_shiftup_or_rnddn)
return np.array (vecfunc (self), dtype=self.base_type)
def check (self):
def _overflow_func (x):
return self.overflow_policy (x, self._min, self._max)
vecfunc = np.vectorize (_overflow_func)
return vecfunc (self)
## The purpose for this is to apply the overflow policy
def __array_wrap__(self, *args):
print 'fixed_pt_array.__array_wrap__%r' % (args,)
def _overflow_func (x):
return self.overflow_policy (x, self._min, self._max)
vecfunc = np.vectorize (_overflow_func)
print 'arg0:', args[0]
args = (vecfunc (args[0]), args[1:])
# then just call the parent
return super(fixed_pt_array, self).__array_wrap__(*args)
fp = fixed_pt (5, 5, 1)
arr = np.arange(5,dtype=int)
obj = fixed_pt_array(arr, int_bits=5, frac_bits=5)
print obj*100
## obj2 = fixed_pt_array (arr, int_bits=5, frac_bits=5, overflow_policy=throw)
## obj3 = obj2 * 100
_______________________________________________
NumPy-Discussion mailing list
NumPy-Discussion@scipy.org
http://mail.scipy.org/mailman/listinfo/numpy-discussion