Hi, More surprises: shaase@iris:~/code/SwiggedDistOMP: gcc -O3 -c the_lib.c -fPIC -fopenmp -ffast-math shaase@iris:~/code/SwiggedDistOMP: gcc -shared -o the_lib.so the_lib.o -lgomp -lm shaase@iris:~/code/SwiggedDistOMP: priithon the_python_prog.py c_threads 0 time 0.000437839031219 # this is now, without #pragma omp parallel for ... c_threads 1 time 0.000865449905396 c_threads 2 time 0.000520548820496 c_threads 3 time 0.00033704996109 c_threads 4 time 0.000620169639587 c_threads 5 time 0.000465350151062 c_threads 6 time 0.000696349143982
This correct now the timing of, max OpenMP speed (3 threads) vs. no OpenMP to speedup of (only!) 1.3x Not 2.33x (which was the number I got when comparing OpenMP to the cdist function). The c code is now: the_lib.c ------------------------------------------------------------------------------------------ #include <stdio.h> #include <time.h> #include <omp.h> #include <math.h> void dists2d( double *a_ps, int na, double *b_ps, int nb, double *dist, int num_threads) { int i, j; double ax,ay, dif_x, dif_y; int nx1=2; int nx2=2; if(num_threads>0) { int dynamic=0; omp_set_dynamic(dynamic); omp_set_num_threads(num_threads); #pragma omp parallel for private(j, i,ax,ay, dif_x, dif_y) for(i=0;i<na;i++) { ax=a_ps[i*nx1]; ay=a_ps[i*nx1+1]; for(j=0;j<nb;j++) { dif_x = ax - b_ps[j*nx2]; dif_y = ay - b_ps[j*nx2+1]; dist[2*i+j] = sqrt(dif_x*dif_x+dif_y*dif_y); } } } else { for(i=0;i<na;i++) { ax=a_ps[i*nx1]; ay=a_ps[i*nx1+1]; for(j=0;j<nb;j++) { dif_x = ax - b_ps[j*nx2]; dif_y = ay - b_ps[j*nx2+1]; dist[2*i+j] = sqrt(dif_x*dif_x+dif_y*dif_y); } } } } ------------------------------------------------------------------ $ gcc -O3 -c the_lib.c -fPIC -fopenmp -ffast-math $ gcc -shared -o the_lib.so the_lib.o -lgomp -lm So, I guess I found a way of getting rid of the OpenMP overhead when run with 1 thread, and found that - if measured correctly, using same compiler settings and so on - the speedup is so small that there no point in doing OpenMP - again. (For my case, having (only) 4 cores) Cheers, Sebastian. On Thu, Feb 17, 2011 at 10:57 AM, Matthieu Brucher <matthieu.bruc...@gmail.com> wrote: > >> Then, where does the overhead come from ? -- >> The call to omp_set_dynamic(dynamic); >> Or the >> #pragma omp parallel for private(j, i,ax,ay, dif_x, dif_y) > > It may be this. You initialize a thread pool, even if it has only one > thread, and there is the dynamic part, so OpenMP may create several chunks > instead of one big chunk. > > Matthieu > -- > Information System Engineer, Ph.D. > Blog: http://matt.eifelle.com > LinkedIn: http://www.linkedin.com/in/matthieubrucher > > _______________________________________________ > NumPy-Discussion mailing list > NumPy-Discussion@scipy.org > http://mail.scipy.org/mailman/listinfo/numpy-discussion > > _______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion