Hi Derek, On Mon, Jun 13, 2011 at 4:17 PM, Derek Homeier < de...@astro.physik.uni-goettingen.de> wrote:
> Hi Ralf, > > > I am pleased to announce the availability of the first release candidate > of NumPy 1.6.1. This is a bugfix release, list of fixed bugs: > > #1834 einsum fails for specific shapes > > #1837 einsum throws nan or freezes python for specific array shapes > > #1838 object <-> structured type arrays regression > > #1851 regression for SWIG based code in 1.6.0 > > #1863 Buggy results when operating on array copied with astype() > > there are a bunch of test failures under Python3, mostly with new datetime > tests > trivially fixed by 'str' -> asbytes('str') conversions (I can send a patch > or pull request > for that), and two more I can't provide a fix for yet: Thanks for testing. > > FAIL: Test custom format function for each element in array. > ---------------------------------------------------------------------- > This test is not in 1.6.x, only in master. I suspect the same is true for the datetime tests, but perhaps not for the S5/U5 thing. Can you clean your install dir and try again? Thanks, Ralf > Traceback (most recent call last): > File > "/Users/derek/lib/python3.2/site-packages/numpy/core/tests/test_arrayprint.py", > line 86, in test_format_function > "[0x0L 0x1L 0x2L]") > File "/Users/derek/lib/python3.2/site-packages/numpy/testing/utils.py", > line 313, in assert_equal > raise AssertionError(msg) > AssertionError: > Items are not equal: > ACTUAL: '[0x0 0x1 0x2]' > DESIRED: '[0x0L 0x1L 0x2L]' > > - this is > x = np.arange(3) > assert_(np.array2string(x, formatter={'all':_format_function}) == \ > "[. o O]") > assert_(np.array2string(x, formatter={'int_kind':_format_function}) > ==\ > "[. o O]") > assert_(np.array2string(x, formatter={'all':lambda x: "%.4f" % x}) > == \ > "[0.0000 1.0000 2.0000]") > assert_equal(np.array2string(x, formatter={'int':lambda x: hex(x)}), > \ > "[0x0L 0x1L 0x2L]") > > (btw. these were all assert_(a == b) before, which do not give a useful > error message > by default - any reason not to change them to assert_equal(, b)?) > > and > FAIL: Ticket #1748 > ---------------------------------------------------------------------- > Traceback (most recent call last): > File > "/Users/derek/lib/python3.2/site-packages/numpy/core/tests/test_regression.py", > line 1549, in test_string_astype > assert_equal(b.dtype, np.dtype('S5')) > File "/Users/derek/lib/python3.2/site-packages/numpy/testing/utils.py", > line 313, in assert_equal > raise AssertionError(msg) > AssertionError: > Items are not equal: > ACTUAL: dtype('<U5') > DESIRED: dtype('|S5') > > for > > s1 = asbytes('black') > s2 = asbytes('white') > s3 = asbytes('other') > a = np.array([[s1],[s2],[s3]]) > assert_equal(a.dtype, np.dtype('S5')) > b = a.astype('str') > assert_equal(b.dtype, np.dtype('S5')) > > I can get around this by changing the last lines to > > b = a.astype(np.dtype('S5')) > assert_equal(b.dtype, np.dtype('S5')) > > but am not sure if this preserves the purpose of the test... > > HTH, > Derek > > _______________________________________________ > NumPy-Discussion mailing list > NumPy-Discussion@scipy.org > http://mail.scipy.org/mailman/listinfo/numpy-discussion >
_______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion