Hi Jens, I don't have enough knowledge about the internal memory layout, but the documentation ndarray.view <http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.view.html> says that:
Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices, transposes, fortran-ordering, etc.: In your case, creating a *copy *of the slice and then calling *view *works. >>>a array([[ 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j], [ 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j]]) >>> a.view(float) array([[ 1., 0., 1., 0., 1., 0., 1., 0.], [ 1., 0., 1., 0., 1., 0., 1., 0.]]) >>> b=a[:,:2].copy() >>> b.view(float) array([[ 1., 0., 1., 0.], [ 1., 0., 1., 0.]]) >>> c=a[:,:2] >>> c.view(float) Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: new type not compatible with array Hope it helps :) Cheers, N.Maniteja. _______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion
_______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion