Em 23 de março de 2018 10:35, Claudio Buffara
<claudio.buff...@gmail.com> escreveu:
> Na verdade os meus questionamentos surgiram por causa do meu interesse em
> ensino de matemática.
>
> Por exemplo, produtos notáveis e fatorações são notoriamente mal ensinados,
> pelo menos nos livros didáticos de 8o e 9o ano que eu examinei.

Eu acho que uma motivação mais geométrica pode ser bastante útil para
muitos produtos notáveis.

Por exemplo, a diferença de quadrados é bem facilmente explicada de
forma geométrica:
um quadrado com um quadradinho a menos no canto pode ser quebrado em
dois trapézios que formam
um retângulo.
O quadrado da soma é mais fácil ainda.

Por outro lado, eu não penso que minha solução foi a mais mágica de
todas, apenas era desconhecida.
Sempre que noto uma expressão simétrica, eu penso em como escrevê-la
em função ou dos
polinômios simétricos elementares ou da soma de potências (x^k+y^k+z^k).

> Nenhum menciona que:
> a) as generalizações de (x+y)^2 = x^2 + 2xy + y^2  e  x^2 - y^2 = (x-y)(x+y)
> para expoentes maiores levam ao teorema do binômio (erroneamente chamado de
> binômio de Newton - nota histórica: Newton generalizou o teorema para
> expoentes racionais) e à fórmula da soma dos termos de uma PG;
> b) (x+y)^2 = x^2 + 2xy + y^2 é a base para a ideia de se completar
> quadrados, a qual, por sua vez, não só resulta na fórmula para as raízes de
> uma equação quadrática, mas também na elucidação das propriedades da função
> quadrática;
> c) o uso inteligente da expansão de (x+y)^3 leva à formula das raízes de uma
> equação cúbica.

Essa eu não conhecia. Ainda penso que as formas mais naturais de lidar
com a cúbica são o Método Gugu-Euler
(tentar uma solução da forma x=raizcúbica(y1)+raizcúbica(y2)) ou usar
a fatoração de x^3+y^3+z^3-3xyz.

Mas o cubo da soma, per se? Isso me parece mágico demais.

(Acho que até imagino o que seja: identificar o termo constante com a
soma de cubos e o termo "linear" com o triplo do produto...)

>
> ***
>
> Há tempos, o Hermann, participante desta lista, postou uma dúvida sobre
> produtos notáveis e pediu dicas de livros com exercícios sobre produtos
> notáveis e fatoração.
> Eu tenho duas sugestões, ambas em inglês:
> - Algebra, de I.M.Gelfand e A.Shen - Birkhäuser (este faz as generalizações
> que eu mencionei acima)
> - A Problem Book in Algebra, de V.A. Krechmar - Mir Publishers (pros
> entusiastas)
> Ambos estão disponíveis na Amazon.
>
> ***
>
> Anos atrás eu gostava de soluções "mágicas", obtidas por meio de alguma
> sacada brilhante que eu jamais conseguiria ter.
> Após me deparar com várias destas soluções, me ocorreu que elas talvez
> tivessem um efeito perverso na motivação dos estudantes de matemática, pois
> passavam a impressão de que é preciso ser um gênio para dominar a matéria.
> Daí o meu interesse em saber como vocês obtiveram certas fatorações.
> Entendo que trabalho braçal, experiência, alguma lógica e um pouco de
> otimismo são, para a maioria de nós, as únicas formas de progredir na
> resolução de um problema como o que deu origem a este thread.
>
> Dito isso (e posso estar enganado) nem o Pedro José e nem mais ninguém
> explicou de onde veio a conjectura (correta) de que:
> z = -(x+y)/2 é solução de (x + y)(y + z)(z + x)/2 + (x + y + z)3 =  – xyz
>
> []s,
> Claudio.
>
>
>
> 2018-03-23 6:20 GMT-03:00 Anderson Torres <torres.anderson...@gmail.com>:
>>
>> Em 21 de março de 2018 09:47, Claudio Buffara
>> <claudio.buff...@gmail.com> escreveu:
>> > Como você passou de:
>> > 4abc + (a+b+c)^3 + (-a+b+c)(a-b+c)(a+b-c) = 1
>> >
>> > Para:
>> > 4(a+b+c)(ab+ac+bc) - 4abc = 1
>>
>> It's kind of magic. Eu simplesmente abri tudo com vontade e notei
>> certas repetições
>> que sempre aparecem em certas fatorações; ou melhor dizendo, estava
>> pensando em
>> escrever tudo em termos dos famigerados polinômios simétricos e cheguei
>> nisso.
>>
>> Sempre que vejo algo como (a^2b+ab^2), já escrevo ab(a+b) e tento
>> procurar um abc
>> para isso resultar em ab(a+b+c).
>>
>> Mas não avancei daí. Penso que dá para fatorar ainda mais...
>>
>> >
>> > ???
>> >
>> > []s,
>> > Claudio.
>> >
>> >
>> > 2018-03-20 23:14 GMT-03:00 Anderson Torres
>> > <torres.anderson...@gmail.com>:
>> >>
>> >> Em 13 de março de 2018 20:19, Douglas Oliveira de Lima
>> >> <profdouglaso.del...@gmail.com> escreveu:
>> >> > Essa achei legal e estou postando.
>> >> >
>> >> > Resolva nos inteiros a seguinte equação:  (x + y)(y + z)(z + x)/2 +
>> >> > (x +
>> >> > y +
>> >> > z)3 = 1 – xyz .
>> >> >
>> >>
>> >> Substituição mágica: x=-a+b+c, y=a-b+c, z=a+b-c. Com isso, x+y=2c,
>> >> x+y+z=a+b+c e
>> >>
>> >> 4abc + (a+b+c)^3 + (-a+b+c)(a-b+c)(a+b-c) = 1
>> >>
>> >> Usando polinômios simétricos,
>> >>
>> >> 4(a+b+c)(ab+ac+bc) - 4abc = 1
>> >>
>> >> Agora estou confuso...
>> >>
>> >> > Abraço do
>> >> > Douglas Oliveira
>> >> >
>> >> > --
>> >> > Esta mensagem foi verificada pelo sistema de antivírus e
>> >> > acredita-se estar livre de perigo.
>> >>
>> >> --
>> >> Esta mensagem foi verificada pelo sistema de antivírus e
>> >>  acredita-se estar livre de perigo.
>> >>
>> >>
>> >>
>> >> =========================================================================
>> >> Instru�ões para entrar na lista, sair da lista e usar a lista em
>> >> http://www.mat.puc-rio.br/~obmlistas/obm-l.html
>> >>
>> >> =========================================================================
>> >
>> >
>> >
>> > --
>> > Esta mensagem foi verificada pelo sistema de antivírus e
>> > acredita-se estar livre de perigo.
>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>>  acredita-se estar livre de perigo.
>>
>>
>> =========================================================================
>> Instru�ões para entrar na lista, sair da lista e usar a lista em
>> http://www.mat.puc-rio.br/~obmlistas/obm-l.html
>> =========================================================================
>
>
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.


=========================================================================
Instru��es para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~obmlistas/obm-l.html
=========================================================================

Responder a