Boa noite!
Minha primeira tentativa foi tudo 1. Mas aí a soma dos quadrados também é
1001=7*11*13.
As ordens de 10 mod desses fatores são 6, 1 e 6. Mas têm 1001 algarismos e
aí 6 ł 1001não serve.
Tentei outros arranjos com grupos de algarismos iguais, mas sem sucesso.
Mas o que não compreendo é porque não há a divulgação da resposta.
Saudações,
PJMS

Em Qui, 24 de mai de 2018 21:09, Anderson Torres <
torres.anderson...@gmail.com> escreveu:

> Em 23 de maio de 2018 21:41, Pedro José <petroc...@gmail.com> escreveu:
> > Boa noite!
> > Há algum motivo para não disponibilizarem o gabarito da olimpiada de
> mayo?
> > Gostaria de ver a solução de um problema da XXII olimpiada:
> > Dizemos que um número inteiro positivo é qua-divi se é divisível pela
> > soma dos quadrados de seus dígitos, e além disso nenhum de seus
> dígitos
> > é igual a zero.
> > a) Encontre um número qua-divi tal que a soma de seus dígitos seja 24.
> > b) Encontre um número qua-divi tal que a soma de seus dígitos seja
> 1001.
>
> Só jogando uma ideia solta, eu tentaria calcular para casos como
> 1111111...11. A soma dos dígitos é N e o número é (10^N-1)/9
>
> Se isso não servir, talvez 1111111......12222222....2 também possa ser
> útil.
>
> >
> > Grato.
> > Saudações,
> > PJMS
> >
> > --
> > Esta mensagem foi verificada pelo sistema de antivírus e
> > acredita-se estar livre de perigo.
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
>  acredita-se estar livre de perigo.
>
>
> =========================================================================
> Instru�ões para entrar na lista, sair da lista e usar a lista em
> http://www.mat.puc-rio.br/~obmlistas/obm-l.html
> =========================================================================
>

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.

Responder a