Boa tarde!
Se 10 não divide n então n<>0 mod100; pois nesse caso daria "00".
Então os números são 2,4 ou 8 côngruos mod10.
2^20=4^10
8^20 = 4^40
4^1= 4 mod10
4^2=6 mod10
4^3= 4 mod10
Logo temos que 4^(2m+1) = 4 mod 10 (i)
Se
a=4 mod 100 ==> a=4 mod 10 (ii)

Então vamos procurar o período de a^n mod100,  Não existe a que satisfaça
a^m= 1 mod100, com m<>0, pois (100,4)=1
Vamos tentar verificar se há repetição do 4.
De (i) e (ii) , temos que: 4^(2m+1) = 4 mod 100
m=1 ==> 4^3 = 64 mod 104, não serve
m=2 ==> 4^5= (4^(3*2))*8 = 28*8= 224=24 mod 100, não serve
m=3 ==> 4^7= 24*16=384=84 mod 100
m=4 ==> 4^9= (2*84)*8=68*8= 544=44 mod100
m=5 ==> 4^11=44*16= 704= 4 mod 100
Portanto o período de 4^a mod100 é 1gual a 10, ou seja, 4^a=4(10x+a)
mod100. com x,a não nulos (Cuidado, que para alguns casos em que (b,m)<>1,
b^x não se repetem para x < xo,e.g., 2^a= 2 mod 100, só é atendido para
a=1, aí tem de sair no braço para ver qual que se repete e pode-se gastar
mais tempo. Por sorte o quatro repetiu. Mas o enunciado dava a dica de que
repetiria, pois, 4^20=4^10 mod 100 para que o problema tenha uma solução
única.
4^20 = 4^10= 4^9*4=44*4=176=76 mod100
8^20=4^40=4^10=76 mod100
2^20=4^10=76 mod 100.

Portanto o algarismo da dezena é 7 e das unidades 6.

Saudações,
PJMS




Em qui, 3 de out de 2019 às 17:51, marcone augusto araújo borges <
marconeborge...@hotmail.com> escreveu:

> Se n é um número natural par não divisível por 10, quais são os dois
> últimos algarismos de n^20?
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.
>

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.

Responder a