Boa tarde!

Resolvi por método numérico usando, pelo menos penso eu, os mesmos limites
e encontrei 2,1329, muito próximo da resposta. Gostaria que alguém me
ajudasse onde errei na integral tripla.
Usei z^2-y e 2z-y como os limites para integral em dx. Em seguida, z^2 e 2z
para dy e finalmente 0 e 2 para dz.
Onde está o erro?
Grato,
PJMS

Em ter, 11 de fev de 2020 12:49, Claudio Buffara <claudio.buff...@gmail.com>
escreveu:

> O sólido é a região do 1o octante (todas as coordenadas positivas)
> compreendida entre os planos x-z e y-z, acima do plano z = (x+y)/2 e abaixo
> da z = raiz(x+y).
> A superfície e o plano se intersectam numa reta:
> raiz(x+y) = (x+y)/2 ==> x+y = (x+y)^2/4 ==> x+y = 4, contida no plano z =
> 2.
>
> Assim, o volume pode ser dado pela diferença entre duas integrais duplas,
> calculadas sobre o domínio D, no plano x-y, dado por x > 0, y > 0 e x+y = 4.
> Volume = Integral(D) raiz(x+y)*dA - Integral(D) (x+y)/2*dA.
>
> Usando coordenadas cartesianas, a primeira integral fica:
> Integral(x=0...4)Integral(y=0...4-x)*raiz(x+y)*dy*dx
> = Integral(0...4) (2/3)*(4^(3/2) - x^(3/2))*dx
> = Integral(0...4) (16/3 - (2/3)*x^(3/2))
> = 64/3 - (4/15)*4^(5/2)
> = 64/3 - 128/15
> = 64/5
>
> A segunda integral é:
> Integral(x=0...4)Integral(y=0...4-x) (x+y)/2*dy*dx
> = Integral(x=0...4) (1/2)*(x*(4-x) + (4-x)^2/2)*dx
> = Integral(0...4) (4 - x^2/4)*dx
> = 32/3
>
> Logo, o volume é 64/5 - 32/3 = 32/15  (se não errei nenhuma conta...)
>
> []s,
> Claudio.
>
>
> On Mon, Feb 3, 2020 at 8:55 PM Luiz Antonio Rodrigues <
> rodrigue...@gmail.com> wrote:
>
>> Olá, pessoal!
>> Tudo bem?
>> Estou tentando resolver o seguinte problema:
>>
>> Ache o volume da região tridimensional definida por:
>>
>> z^2<x+y<2*z
>>
>> Sendo que:
>> x>0 e y>0 e z>0
>>
>> Com o auxílio de um software eu consegui visualizar o sólido em questão.
>> Eu calculei o volume do sólido girando em torno do eixo z e dividindo o
>> resultado por 4.
>> A resposta que eu obtive foi (16*pi)/15, que não está correta.
>> Já refiz os cálculos muitas vezes e chego sempre na mesma resposta.
>> Alguém pode me ajudar?
>> Muito obrigado e um abraço!
>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>> acredita-se estar livre de perigo.
>
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.

Responder a