Internet and Smart Card Application Deployment

Xavier Lorphelin

JSource, USA
xavi er. | orphel i n@ source. com
http://ww.jsource.com

Abstract. This paper describes a new dynamic model for smart card application
deployment and addresses two major constraints when deploying applications over
the Internet: security and loading time. In this dynamic model, new applications can
be downloaded to the card terminal as Java applets signed by atrusted entity. These
applications are built on top of smartX framework, a new technology introduced by
Gemplus that leverages Java and XML benefits for the dynamic deployment of
smart card applications.

Introduction

The card application and theterminal application

This paper defines a smart card application in its large scope: the card-resident application
and the terminal-resident application. Both application components have to be
implemented in parallel. The terminal acts as a server and the card as a client: the terminal
sends instructions and data to the card and the card returns data to the terminal. Once
received by the card, the instructions sent by the terminal have to be mapped to native
instructions that can be executed by the card. The card application processes these
terminal instructions and returns the expected data to the terminal. The terminal application
manages the sequence of instructions to be sent to the card and correctly interprets the
card data.

Deploying a smart card application implies loading and personalizing the card-resident
application and the terminal-resident application.

Static model for smart card application deployment

In atraditional deployment model, the smart card and the terminal are statically configured
for aspecific smart card application.

The card-resident application is typically loaded on the smart card during the
manufacturing process and then personalized by the smart card issuer. There is one
application per card and this is the same application for the card lifetime. The same
initialization and personalization processes happen at the terminal level where the terminal-
resident application needs to be installed before the deployment of the smart cards. Such
terminal will only operate for the smart card applications it has been configured for. Note
that a terminal can be loaded with different smart card applications, each application
having its own functionality. For example, aterminal located at a hospital may have a purse
application and a medical application. The patient has two smart cards: one card operates
for the purse application, accepting debit or credit transactions, whereas the second smart
card contains medical records for the patient. In this static model, the deployment of a new
smart card application involves issuing new cards and reconfiguring the terminal
infrastructure.

Dynamic modd for smart card application deployment

Recent industry initiatives have made this static model obsolete. At the card level, new
open platforms like Java Card, MultOS or Smart Card for Windows bring the promises of
multi-application: multiple card-resident applications can be loaded on the same card. At
the terminal level, the PC/SC and OCF initiatives define new frameworks to develop and
deploy terminal applications. All these initiatives converge toward a new dynamic model
for smart card application deployment.

In a dynamic model, the smart card and the terminal are multifunctional. This not only
means that the card and the terminal can host multiple applications, but that these
applications can be dynamically loaded and configured. Once the card isissued, new card-
resident applications can be downloaded and personalized. The same applies to the
terminal that can be dynamically configured to accept new smart card applications.

Thelnternet: adynamic world

The Internet is an essential factor to enable the dynamic deployment of smart card
applications. From the Web, you can access real-time information anytime, anywhere; you
can buy products on-line; you can download new software to your personal computer.
The same logic applies to smart card applications: from the Internet, you will be able to
download new card applications and new terminal applications. This model assumesthe

terminal to be connected to the Internet, either directly for a stand-alone terminal or
indirectly through your personal computer. Smart card applications deployed on the
Internet are accessed through your favorite web browser. These smart card applications
are dynamically downloaded to the terminal (or your personal computer) and to the card in
case of post-issuance loading. In thismodel, the terminal application iscompiled into a
Java applet. The features and benefits of Javamakeit anatural programming language for
applications loaded over the Internet. The card application format depends on the card
operating system (Java Card, Multos or Windows for Smart Card).

Let's illustrate this model for a typical smart card application: credit/debit. Using your
smart card, you can pay for the goods you are buying on-line. Assuming the credit/debit
application isinitially loaded on the card, you just need to insert your card in the terminal
and type your password to authorize the transaction. The terminal downloads a Java
applet that encapsulates the functionality to open a connection to the card and execute a
debit or credit operation on the card. This processisindependent of the terminal aslong as
the terminal is correctly configured to accept Java applets. In this example, a terminal
application is dynamically downloaded to the terminal. The mechanism to download a card
application to a smart card is out of the scope of this paper since there is yet no common
standard for the card application format.

Security and loading time

This paper addresses two main constraints when deploying terminal applications on the
Internet: security and loading time.

The security model for the Internet prevents Java applets from accessing local properties
and resources (like the COM port to which your smart card reader is connected). The paper
reviews the different security models to sign a Java applet: Microsoft Internet Explorer (1E),
Netscape Navigator, Sun JDK 1.1, Sun JDK 1.2.

Loading time is a constraint that impacts the size of the applet. This paper introduces a
new technology developed by Gemplus: smartX. By separating the application logic from
the application process, smartX reduces the Java applet to the core logic and relies on
XML dictionaries to encapsulate card-specific protocols. With this technology, an
application is also independent of the type of smart card.

Security modd for smart card application deployment

OpenCard Framework

For the purpose of this paper, terminal applications loaded over the Internet are built on

top of OpenCard Framework (OCF). The OpenCard Framework is an open standard that

provides interoperability of smart card applications across NCs, POS terminals, desktops,
laptops, and set-top boxes (see [1] for OCF official web site). The OpenCard Framework

provides devel opers with an interface for the devel opment of terminal applicationsin Java.

There are two main layers defined in the OCF architecture: the CardTerminal layer and the
CardService layer.

The CardTerminal layer provides access to physical terminals and inserted smart cards. It

is the responsibility of the terminal manufacturer to implement the CardTerminal layer for a
specific terminal. There are two alternatives to physically accessing a terminal: through a
PC/SC driver or through a pure Java driver. PC/SC standard defines a comprehensive and

flexible solution for integrating smart cards with Windows platforms. The other alternative
is a pure Java driver built on the Java Communications APl from Sun Microsystems. For
example, to access your Gemplus reader GCR410 through OCF, you can either select the
generic CardTerminal implementation for PC/SC or the pure Java CardTermina

implementation provided by Gemplus.

The CardService layer provides access to the card application loaded on the smart card. A

CardService implementation encapsul ates the logic of a smart card application for a specific

smart card operating system. CardServices are implemented by smart card manufacturers or
by smart card application devel opers.

Terminal configuration

The OpenCard Framework API consists in several packages that contain the core classes
and the extensions. We assume these packages are initially installed on the terminal (or the
personal computer). OpenCard Framework also needs to be correctly configured before
being invoked. This configuration phase is critical since it determines which CardTerminal
and CardService implementations are to be used. Configuration properties are listed in a
property file (opencard. properties). The mechanism to load these properties is
described in OCF reference implementation. This property file has to be located in either
one of the variable paths defined by the following system properties. user. hone,
user. di r andj ava. hone. Note that these system properties depend on the Java Virtual
Machine you selected to run the Java applet. This paper will cover the following Java
VMs:. Microsoft VM, Netscape VM, Sun Java Runtime Environment 1.1, Sun Java Runtime
Environment 1.2.

OCF configuration for GCR410 pure Java driver

OpenCard.term nals =

com genpl us. opencard. term nal . Genpl usCar dTer m nal Fact ory|
mygcr | GCR410| COML

OCF configuration for PC/SC driver

OpenCard.term nals =

com i bm opencard. term nal . pcscl10. Pcscl0CardTer m nal Fact ory

Listing 1: CardTerminal configuration

Part of the configuration requirements, your CLASSPATH variable needs to include the
different packages required for your terminal application: OCF core and extensions
packages, Java Communication API (if you selected a pure Java CardTerminal) and any
other APIs relevant to your application. To configure your CLASSPATH under Windows
95/98, edit your Aut oexec. bat filelocated in the main drive of your computer, update the
CLASSPATH and reboot your machine. For Windows NT, select “Environment” under
“System” in the Control Panel.

Finally, make sure any required DLL (like Ccf pcscl. dl | and Ccf pcscm di | for OCF) is
inadirectory included in your PATH variable.

Java applet and Internet security

Java applets have restricted privileges when running on your local machine. They cannot
read or write to a file, nor can they access the system properties (see [2] for additional
details on the Java security model for applets). As explained in the previous section,
OpenCard Framework relies on a property file (opencar d. properti es) to configure its
run-time environment. Only signed Java applets will have access to this property file.
Terminal applications |loaded as Java applets and built on top of OCF therefore have to be
initially signed.
Unfortunately for the smart card application developer, there are multiple security models
(one for each Virtual Machine). Each security model defines its own mechanism for applet
signing. An applet signed with Microsoft si gncode tool will not execute on Netscape
Navigator, and vice versa. Sun signing mechanism for JDK 1.1 and JDK 1.2 is also not
supported by any of the native browsers. The next sections will briefly describe the
signing process for each model, as well as the configuration required to run the terminal
application.
The process to sign an applet can be summarized in three main steps:

Create a certificate for atrusted entity.
This certificate can either be requested from a Certification Authority (CA) like VeriSign, or
auto-generated for test purpose.

Sign the Java applet packaged as a CAB or JAR file using the certificate.

Insert the signed applet in an HTML document.
Listings 10-17 at the end of the paper provide the scripts (DOS batch files) that automate
the process of creating a certificate and signing an applet for each security model
described in this paper. Please feel free to use these scripts for your own terminal
application implementation.

Micr osoft security model

Using the nakecert and the cert 2spc tools, you can generate your own certificate for
the Microsoft security model. The Java applet is packaged as a CAB file with the cabar ¢
tool. Using your SPC certificate (Software Publisher Certificate), you can then sign your
applet withsi gncode. When you sign your applet, you can select three permission levels:
High, Medium and Low. These permission levels work in conjunction with Internet
Explorer zones to determine what an applet can do (see [3] for information on Microsoft
security model).

To insert your signed CAB file as an applet in an HTML document, you will need to use
the parameter cabbase inside the tag <appl et >.

<appl et wi dt h="120" hei ght="120" code="myAppl et.cl ass">
<par am name="cabbase" val ue="connect. cab">
</ appl et >

Listing 2: HTML syntax for CAB package

When this applet is loaded on Microsoft IE, the user will be prompted once for his
authorization to run the applet. Notethat if the Internet Explorer Zoneisset to “Low”, any
applet - signed or unsigned - will automatically run on your local computer without giving
you awarning message.

With Microsoft IE, the opencar d. properti es file needsto be located in the j ava. horre
directory: C:\ W ndows\ Java\lib or C\Wnnt\Java\lib. You might have to create
thel i b folder if it does not already exist.

Netscape security model
Netscape Signing Tool version 1.1 allows you to create object-signing certificates for

testing purposes (see [4] for information on Netscape security model and object signing
resources). Before generating your certificate, you must set a password for the

Communicator Certificate Database: click on the “ Security” icon on the toolbar and select
“Passwords’. This Communicator password will be used to protect your certificates.

The si gnt ool option - G generates a new public-private key pair and certificate. To
automatically install the newly generated certificate and keys in the Communicator
Certificate Database, you can select the - d option followed by the Netscape directory that
contains the key and certificate databases (respectively key3. db and cert 7. db). These
databases are located inC: \ Pr ogr am Fi | es\ Net scape\ User s\ def aul t . Note that the
auto-generated certificate is output to afile named x509. cacert .

When signing the Java applet, you first need to create a temporary directory where you
copy the files you want to sign. Then you sign the whole directory using si gnt ool and
your test certificate. The same operation will package the applet as a JAR file and sign the
JARfile.

To insert your signed CAB file as an applet in an HTML document, you will need to use
the parameter ar chi ve inside the tag <appl et >.

<appl et wi dth="120" hei ght="120" code="nyAppl et.cl ass">
<par am name="ar chi ve" val ue="connect.jar">
</ appl et >

Listing 3: HTML syntax for JAR package

When this signed applet is loaded on Netscape Navigator, the user is asked to authorize
each privilege requested by the applet. With the Microsoft |E security model, the user is
prompted only once. There is another major difference between the two security models:
with Netscape, the user must first import the certificate used to sign the applet in his own
Certificate Database. The HTML page hosting the applet should then have a link to the
x509. cacert certificate.

To configure OCF for Netscape Navigator, you rename the file opencar d. properti es to
. opencard. properties (add adot to the file name) using the DOS command r en and
you copy the renamed file in the user.hone directory: C \Program
Fi | es\ Net scape\ User s\ <user >.

JDK 1.1 security model

In the JDK 1.1 security model, a signed applet is given the same privileges as an
application running on your local machine. Y ou cannot specify which privilege to grant to
the applet asin the Microsoft or Netscape security models.

With thej avakey tool, you create a new trusted entity in the security database and a key
pair (public and private keys) for this entity. Y ou then generate a certificate for this entity
using acertificate directive file (asimple text file that contains certificate information). Once

the applet is packaged into a JAR file using the j ar tool, you can then sign the JAR file
with a signing directive text file that specifies the identity of the signer and the certificate
to usefor this signer (see[5] for adetailed example on how to sign an applet for JDK 1.1).
Since Microsoft or Netscape does not support the JDK 1.1 security model, Sun introduced
the Java Plug-in 1.1 (see [7]). This Plug-in allows to bypass the native Virtual Machine of
the browser and to specify another Java Runtime Environment. The HTML file that hosts
the Java applet must be converted to a correct format to automatically trigger the Java
Plug-in. Fortunately, Sun also provided a tool, the HTML converter, that automates this
conversion.

One major constraint with thismodel is that it requires additional configuration steps. The
user first needs to install the Java Plug-in on his local machine. Then, through the Java
Plug-in Control Panel, he selects the Java Runtime Environment (JRE) that will replace the
native Virtual Machine of the browser. Before running the signed applet, the user must
also declare the entity that signed the applet as trusted and import the certificate of this
entity using the j avakey tool. When the JRE loads a signed applet, it looks into its
security database (. obj file) to verify if the entity that signed the applet is trusted. If the
entity is trusted, the JRE retrieves the certificate attached to this entity and verifies the
signature of the applet. One general error causing this verification to fail is the identity
database not being located where the JRE expects it. By default, the JRE looks for the
database in the user . hone directory: C:\ W nnt\ Prof i | es\ <user nane> for Windows
NT platforms. It is however possible to specify another location for the identity database.
If you edit the j ava. security filelocated inli b/ security folder of the selected JRE,
you can specify where the identity database islocated by adding the following line:

Identity. database = <JRE path>/1ib/security/ nydb. obj
(thisisthe recommended location for the identity database)

The opencar d. properti es file can either be installed in the user . hone directory or in
thel i b folder of the selected JRE.

All these extra configuration steps make this model limited for large deployment of smart
card applications.

JDK 1.2 security model

JDK 1.2 security model differs from the “al” or “nothing” approach of the 1.1 model. Like
the Microsoft or Netscape models, JDK 1.2 allows granting privilegesin avery fine-grained
matter.

The process to create a certificate is also simplified. One keyt ool instruction declares a
trusted entity, generates the keys and creates the certificate. The new keystore architecture
replacestheidentity database thatj avakey created and managed. Note that you can now

protect your keystore and your private keys with passwords. Once the applet is packaged
into aJAR fileusing thej ar tool, you can then sign the JAR file with the j ar si gner tool
(see[6] for adetailed example on how to sign an applet for JDK 1.2).

Like DK 1.1, the 1.2 security model is still not supported by your favorite browser and Sun
released the Java Plug-in 1.2 and the HTML converter tool for the 1.2 security model. You
will therefore need to convert your HTML file that hosts your signed appl et.

Unfortunately, configuring your local machine for the JDK 1.2 security model is as
complicated as for Java 1.1. Before running the signed applet, the user must first install the
Java Plug-in, select the JRE 1.2 and import the certificate of the trusted entity that signed
the applet. There is an additional step: the user needs to update the policy file attached
with the keystore to specify which privileges are granted to the entity that signed the
applet. This j ava. pol i cy file is initialy located in the 1ib/security folder of the
selected JRE 1.2.

/1 this keystore is to store our certificates
keystore ". keystore";

// gives full privileges to applets signed by XLorphelin
grant signedBy "XLorphelin" {
perm ssi on java.security. All Perm ssion;

I
Listing 4: Policy filefor JDK 1.2 security model

To verify a signed applet, the JRE first refers to its j ava. security file located in
l'i b/ security. Thisfile specifieswherethej ava. pol i cy fileislocated. The defaultisto
have a single system-wide policy fileinthe | i b/ securi ty folder and a policy file in the
user's home directory (C:\ W nnt\ Profi | es\ <user nane> for Windows NT platforms).
This policy file provides the name and location of the keystore as well as determines what
actions foreign applets signed by a specific entity are allowed to carry out on the user’'s
local machine. When using JDK 1.2 security model to load aterminal application, the user
must carefully install the j ava. pol i cy file and the attached keystore in the expected
directory. Note that the j ava. pol i cy file must be rename . j ava. pol i cy (don’t forget
the dot at the beginning of the file name) if located in the user . hone directory.

The opencar d. properti es file can either be installed in the user . hone directory or in
thel i b folder of the selected JRE.

OCF 1.1.1 support for native browsers

In the Microsoft and Netscape security models, an applet must explicitly request the
privileges in its source code. You need to modify your Java code to request the relevant

permission before you exercise this permission in your code. To enable a permission in
Microsoft IE, you cal the static method assertPernission() on the class
com ns. security. Pol i cyEngi ne to grant a specific permission. In Netscape Navigator,
you cal the static method enabl ePrivilege() on the class
net scape. security. Privil egeManager .
To avoid vendor specific calls in the OCF pure Java code, the latest 1.1.1 release from the
OpenCard Consortium introduced a new class. opencard. core. util . Syst emAccess.
Any operation that requires a permission from the native browser is processed through
this class. By default, the SystemAccess class does not provide any browser
functionality. OCF 1.1.1 provides two extensions of this parent class to implement browser-
specific security model:

opencar d. opt . net scape. Net scapeSyst emAccess

opencard. opt. ns. M crosof t Syst emAccess
When running OCF under Microsoft |E or Netscape Navigator, the correct Syst emAccess
implementation needs to be set before the method Snart Card. start () isinvoked. In
Listing 5, this configuration is performed in thei ni t () method of the applet for Microsoft
| E security model.

Public void init() {
R
opencard. core. util.SystemAccess sys =
new opencard. opt.ns. M crosoft Syst emAccess();
opencard. core. util.SystemAccess. set Syst emAccess(sys);
NN

}
Listing 5: Initialize OCF security model

smartX & smart card application

OCF modd for smart card application deployment

We already saw that OCF is a suitable platform to deploy smart card applications over the
Internet. OCF open architecture alows the user to select which CardTermina and
CardService implementations are to be used. For a given terminal, there are currently two
possible CardTerminal implementations: the generic PC/SC CardTermina or a pure Java
CardTerminal implementation based on the Java Communications API. However, there are
many possible CardService implementations, even for the same application (like
credit/debit). Remember that a CardService is specific to the card operating system. A

CardService implementation for the Gemplus GPK card would be different than the
implementation for the Schlumberger Multiflex card. Open standards like Java Card,
MultOS, or Smart Card for Windows will solve this compatibility problems (at least
reducing the number of operating systems to less than five), however these standards are
far from being widely implemented by the whole smart card industry.

When you deploy your terminal application, you may want to accept as many different
cards as possible. For each type of card, you will need to write the corresponding
CardService. These CardServices need to be bundled with the Java applet, thus increasing
the size of the applet. Thiswill negatively impact the loading time of the applet. Remember
that a person surfing the Web does not wait an average more than five seconds for the
HTML page to be loaded on his browser! This model also does not clearly define how a
new CardService - for a new type of smart card - would be dynamically downloaded to a
terminal.

Description of smartX architecture

Gemplus introduces a new technology that solves the loading time & interoperability

constraints inherent to the OCF model. This technology, smartX, combined with OCF on

the terminal-side and open systems on the card-side will accelerate the migration to smart

card applications being dynamically deployed on the Internet.

smartX defines a complete framework to develop and deploy smart card applications (see
[8] for smartX official web site). In smartX architecture, the application process - the logic

of the application - is dissociated from the application protocol. The application process
consists in high-level functions (also called processes) executed by the terminal: for
example, credit or debit. The application process relies on the application protocol to

transform a process into a sequence of card-specific instructions, more commonly called

APDUs.

Since it is hardware independent, the application process is only implemented once by the
application developer. The application protocol is very similar to the concept of

CardService introduced by OCF. However, this application protocol is not implemented in

Java like CardService. For the description of application protocols, smartX relies on SML

(Smart Markup Language), a markup language based on XML (eXtended Markup

Language). The SML document describing an application protocol is called adictionary. A

dictionary contains one or several card profiles (one profile per smart card type) and each

profile contains one or several card processes. Each card process is implemented for a
given card profile using card-specific commands.

One main advantage of XML is that it is fully integrated with the Internet. The latest
versions of the popular web browsers now include the functionality to read and process
XML documents. Like HTML, XML is a markup language, but it presents one big

advantage compared to HTML: with XML, you can define your own set of tags and your

own syntax. In this perspective, SML is merely an implementation of XML for the smart
card industry. For example, SML provides the tag <Apdu> to describe an APDU command.
As with HTML, you can have tag attributes and embedded tags inside a tag. Listing 6
details the structure of an APDU command described inside an SML dictionary.

<Apdu Id = "SelectFile">

<Apdu | d="sel ectFil e"

<Command>

<Header Class = "0OxA0" Ins = "OxA4" P1 = "0" P2 = "0"
Lc = "2" Le = "0x20"/>

<In>filel D</|n>

</ Command>

<Response Status = "Nornal Endi ng" Notify = "DoNotNotify">

<Qut >fil el nf or mati on</ Qut >

</ Response>

</ Apdu>

Listing 6: SML structureof acard instruction (APDU)

Application protocols described inside SML documents present the same advantages as
HTML pages:
- Downloadable: SML dictionaries can be accessed and downloaded from the Internet
through aregular HTTP connection.
Portable: SML dictionaries are platform-independent.
Editable: you can easily edit and modify an SML document using your preferred text
editor.

smartX model for smart card application deployment

In this model, we assume OCF and the smartX engine are initially installed and configured
on the target terminal. As explained in the previous section, the terminal application
consistsin two blocks: the application process and the application protocol.

The application process that encapsulates the logic of the application is compiled into a
Java applet signed by atrusted entity. The application protocol is described inside an SML
dictionary and is card-specific. Once the Java applet is downloaded, the smartX engine
identifies the smart card inserted in the terminal. A simple identification consists in
verifying the historical bytes of the card ATR (Answer To Reset). After correct
identification, the smartX engine dynamically downloads the SML dictionary that contains
the application protocol for the card inserted inside the terminal. With this dynamic
mechanism, you minimize the loading time since you only download the dictionary relevant

to the card inside the terminal. In the OCF model, you had to download with the applet all
the CardService implementations. With smartX, aterminal isalso not limited to a predefined
set of smart cards. As long as you provide the correct SML dictionary, a termina can
dynamically accept a new smart card that was not originally supported by the application.
All these advantages make smartX a platform of choice for developing and deploying
smart card applications on the Internet.

Downloading SML dictionaries

After identifying the smart card, the smartX engine needs to know the location of the
dictionary to be downloaded. Y ou would prefer not to hardcode this location inside the
application process to avoid modifying and recompiling your terminal application each time
you need to update this location or add a new dictionary. The solution consistsin defining
the dictionary locations in an external document, the same way OCF defines its properties
inside a property file. Rather than using a text file, smartX relies on a specific SML
document called the “boot sequence’. This document specifies the dictionary location for
each card profile.

<Profile Type = "GenCl ub" Version = "0.1">
<Si gnature Type = "Card">0x80 0x66 0xA2 0x06 0x02 0x01 0x32
Ox0E</ Si gnat ur e>

<Process Nanme = "getFile">
<Apdu Id = "returnFil enane" >
<Command>

<Header Class = "0x00" Ins = "0x00" P1 = "0" P2 = "0"
Lc = "0" Le = "0"/>
<In>"http://ww. smartxm . com devel oper/ demo/ Cl ubLoyal ty. xm "</ | n>
</ Command>
<Response Status = "Nornmal Endi ng" Notify = "DoNot Notify">
<Qut >" Voi d" </ Qut >
</ Response>
</ Apdu>
</ Process>
</ Profile>

Listing 7: Boot sequence document

In Listing 7, the dictionary for the card GemClub is located on the Internet. This dictionary
could also be installed on the local terminal, or it could be stored inside the smart card.
Note that the location is specified as acomment inside the <I n> tag. Thisis a special SML
syntax to declare an instruction that needs to be processed by the application, not by the
smart card. The initial location of the boot sequence can be defined inside the application

process code or as a parameter for the applet inside the HTML document. To add support
for a new smart card, you just need to update the boot sequence by adding a new profile
type with the location of the corresponding SML dictionary.

Implementing the application process.

The application process is the core of the terminal application. It isimplemented as a Java
applet that can be dynamically downloaded to aterminal. This applet hasto be signed by a
trusted entity since the application process relies on OCF framework to open a
communication to the terminal. smartX provides the class
com genpl us. smart xx. f ramewor k. Ccf Ter mi nal 11 to interface with the OCF layer.
Remember to set the correct Syst emAccess implementation before you create an instance
of the Ccf Ter i nal 11 class.

Once the connection to the terminal is opened, the application process can communicate to
the smart card through a virtual smart card object. This virtual smart card abstracts the
smart card inserted in the terminal. A process called on this virtual smart card is
transformed at runtime by the smartX engine into card-specific instructions (or APDUS)
defined inside the SML dictionary. smartX provides two different implementations for the
virtual smart card: a generic implementation and a proxy implementation.

In the generic implementation, the virtual smart card is declared as an instance of the
interface genpl us. smart x. f ramewor k. RunProcess. You can then invoke any card
process like “credit” by calling the method r unPr ocess() on this virtual smart card and
passing the name of the process as an argument. In listing 8, the argument
pr ocessAr gunment s is an array of Strings that contains the arguments to run the process
“credit” (like the amount to be credited, the date of the transaction,...).

/] create an instance of the term nal

Ocf Term nal 11 term nal = new Ocf Term nal 11();

N

[l instantiate the virtual smart card

RunProcess virtual Card = new RunProcessl| npl (term nal);

/1 call a card process

try { responseProcess = virtual Card.runProcess("“credit",
processArgunments); }

catch(Profil eException pe) { }

cat ch(RunProcessException rpe) { }

Listing 8: Generic implementation for the application process
In the proxy implementation, the virtual card is declared as an instance of the interface

Vi rt ual Car d. Thisinterface and itsimplementation, Vi r t ual Car dI npl , act as a proxy to
the application protocol: you can directly invoke a card process like “ credit” by calling the

method cr edi t () on the virtual smart card. Note that the two classes Vi r t ual Card and
Vi rt ual Car dl npl have to be generated by the application developer (Gemplus provides
auseful tool that automates this step).

/] instantiate smartX engi ne

RunProcess processEngi ne = new RunProcessl npl (term nal);

/] instantiate the virtual card

virtual Card = new Virtual Cardl npl (processEngi ne) ;

/1l call a card process

try { responseProcess = virtual Card. credit(processArgunents); }
catch(Profil eException pe) { }

cat ch(RunProcessException rpe) { }

Listing 9: Proxy implementation for the application process

References

[1] OpenCard Framework Web Site: ht t p: / / www. opencar d. or g/

[2] Java Security Model: ht t p: / /] ava. sun. cont sf ag/

[3] Microsoft Security Model:
http://ww. m crosoft.comjaval/security/default.htm

[4] Netscape Object Signing Resources:
htt p://devel oper. net scape. coni sof t war e/ si gnedobj

[5] Signed Applet Examplefor DK 1.1: htt p: //j ava. sun. coni securi t y/ si gnExanpl e/

[6] Signed Applet Example for JDK 1.2:
http://java. sun. com security/signExanpl el2/

[7] Java Plug-in from Sun Microsystems. ht t p: //j ava. sun. cond pr oduct s/ pl ugi n/

[8] smartX Web Site: ht t p: / / www. smart xnd . com

rem*** Script to create a certificate (Mcrosoft) ***
rem You need to custom ze the certificate-rel ated nanes

rem Save previ ous PATH val ue
set PATH_SAVE=%PATH%

rem Set environnment variables

remthe directory where Mcrosoft signing tools are installed:
set SIGN_DI R=C: \ Progra~1\ M cr osof t \ SDK- Java. 31\ Bi n\ PackSi gn
remthe directory where to store the certificates:

set SECUR DI R=D: \ Dat a\ xavi er\ gdc99\ code\ security\ m crosoft

rem Set Path to include Mcrosoft signing tools
set PATH=%PATHY% %8l GN_DI R%

rem Create a certificate using makecert
makecert -sk XLKey -n "CN=Xavier Lorphelin" XLCert.cer

rem Turn certificate into a Software Publisher Certificate (SPC)
cert2spc XLCert.cer XLCert.spc

rem Del ete environnent vari abl es
set SI GN_DI R=
set SECUR DI R=

rem Restore default PATH
set PATH=%PATH_SAVE%

Listing 10: Generating a certificate for Microsoft security model

rem*** Script to sign a CAB file (Mcrosoft) ***
rem You need to custonmi ze the certificate-rel ated nanes

rem Save previous PATH val ue
set PATH_SAVE=%ATH%

rem Set environment variabl es

remthe name of the CAB file:

set CAB_NAME=connect . cab

remthe directory where Mcrosoft signing tools are install ed:
set SI GN_DI R=C: \ Progra~1\ M cr osof t\ SDK- Java. 31\ Bi n\ PackSi gn
remthe directory that contains the Java classes to be signed:
set CLASSES_DI R=D: \ Dat a\ xavi er\ gdc99\ code\ cl asses

remthe directory where to store the certificates:

set SECUR DI R=D: \ Dat a\ xavi er\ gdc99\ code\ security\ m crosoft

rem Set Path to include Mcrosoft signing tools
set PATH=%PATH% %8l GN_DI R%

rem Create a CAB file using cabarc
cd %CLASSES_ DI R%
cabarc -r -p n %CAB_NAME% *. *

rem Sign CAB file using signcode

move %CAB_NAMEY% USECUR_DI R%

cd %SECUR_DI R%

signcode -j javasign.dll -jp low -spc XLCert.spc -k XLKey
%CAB_NANE%

rem Del ete environnment vari abl es
set CAB_NAME=

set SIGN_DI R=

set CLASSES DI R=

set SECUR_DI R=

rem Restore default PATH
set PATH=%PATH_SAVE%

Listing 11: Signing an applet for Microsoft security model

rem*** Script to create a certificate (Netscape) ***
rem You need to customi ze the certificate-rel ated nanes

rem Save previous PATH val ue
set PATH_SAVE=%ATH%

rem Set environment variabl es

remthe directory where Netscape signing tool is installed:
set SI GN_DI R=D: \ Dat a\ xavi er\ gdc99\ code\ securi ty\ net scape
remthe directory where to store the certificates:

set SECUR DI R=D: \ Dat a\ xavi er\ gdc99\ code\ security\net scape
remthe Netscape directory that contains key3.db and cert 7. db:
set DB_DI R=C: \ Progr a~1\ Net scape\ User s\ def aul t

rem Set Path to include Netscape signing tool
set PATH=%PATH% %S| GN_DI R%

rem Create Test certificate
cd ¥%SECUR DI R%
signtool -G XLCert -d %OB_DI R%

rem Del ete environment vari abl es
set SI GN DI R=

set SECUR_DI R=

set DB DI R=

rem Restore default PATH
set PATH=%PATH_SAVE%

Listing 12: Generating a certificate for Netscape security model

rem*** Script to sign a JAR file (Netscape) ***
rem You need to custom ze the certificate-rel ated nanes

rem Save previous PATH val ue
set PATH_SAVE=%ATH%

rem Set environment vari abl es
remthe name of the JAR file:
set JAR _NAME=connect.j ar

remthe directory that contains the Java cl asses to be signed:

set CLASSES_DI R=D: \ Dat a\ xavi er\ gdc99\ code\ cl asses

remthe directory where Netscape signing tool is installed:
set S| GN_DI R=D: \ Dat a\ xavi er\ gdc99\ code\ security\ net scape
remthe directory where to store the certificates:

set SECUR DI R=D: \ Dat a\ xavi er\ gdc99\ code\ security\net scape

remthe Netscape directory that contains key3.db and cert?7. db:

set DB_DI R=C: \ Progr a~1\ Net scape\ User s\ def aul t

rem Set Path to include Netscape signing tool
set PATH=%PATH% %8l GN_DI R%

rem Copy key3.db and cert7.db in the certificate directory
cd ¥SECUR_DI R%

copy %DB_DI R% key3. db %SECUR DI R%

copy %DB DI R cert7.db %SECUR_DI R%

rem Sign JAR file using signtool

md signdir

xcopy UCLASSES DI R% signdir /s

signtool -k XLCert -Z %AR_NAME% -d. signdir
rd signdir /s

rem Del ete environnent vari abl es
set JAR_NAME=

set CLASSES DI R=

set SIGN DI R=

set SECUR DI R=
set DB_DI R=

rem Restore default PATH
set PATH=%ATH_SAVE%

Listing 13: Signing an applet for Netscape security model

rem*** Script to create a certificate (SUN JDK 1.1) ***
rem You need to custom ze the certificate-rel ated nanes

rem Save previ ous PATH val ue
set PATH_SAVE=%PATH%

rem Set environnment variabl es

remthe directory where SUN signing tools are installed:
set SIGN_DI R=D:\ Dat a\java\jdkl. 1. 8\bin

remthe directory where to store the certificates:

set SECUR_DI R=D: \ Dat a\ xavi er\ gdc99\ code\ security\pluginl.1

rem Set Path to include JDK signing tools
set PATH=%SI GN_DI R% YPATH%

rem Create identity in security database
cd %SECUR_DI R%
j avakey -cs XLorphelin true

rem Create key pair (public & private)
j avakey -gk XLorphelin DSA 512 XL_pub XL_priv

rem Generate certificate
j avakey -gc XLcertdir.txt

rem Del ete environnment vari abl es
set SIGN_DI R=
set SECUR DI R=

rem Restore default PATH
set PATH=%ATH_SAVE%

Listing 14: Generating a certificate for Java 1.1 security model

rem*** Script to sign a JARfile (SUN JDK 1.1) ***
rem You need to custom ze the certificate-rel ated nanes

rem Save previ ous PATH val ue
set PATH_SAVE=%PATH%

rem Set environnment variabl es

remthe name of the JAR file:

set JAR _NAME=connect.j ar

remthe directory that contains the Java classes to be signed:
set CLASSES_DI R=D: \ Dat a\ xavi er\ gdc99\ code\ cl asses

remthe directory where SUN signing tools are installed:

set SIGN_DI R=D:\ Dat a\java\jdkl. 1.8\ bin

remthe directory where to store the certificates:

set SECUR_DI R=D: \ Dat a\ xavi er\ gdc99\ code\ security\pluginl.1

rem Set Path to include JDK signing tools
set PATH=%SI GN_DI R% YPATH%

rem Create a JAR file
cd %CLASSES DI R%
jar cvf % AR _NAME% *. *

rem Sign JAR file using javakey

nmove % AR_NAME% %SECUR DI R%

cd %SECUR DI R%

j avakey -gs XLsigndir.txt % AR _NAME%
del %AR _NAME% / q

ren %JAR _NAMVE% si g % AR_NAME%

rem Del ete environnent vari abl es
set JAR_NAME=

set CLASSES DI R=

set SIGN DI R=

set SECUR DI R=

rem Restore default PATH
set PATH=%PATH_SAVE%

Listing 15: Signing an applet for Java 1.1 security model

rem*** Script to create a certificate (SUN JDK 1.2) ***
rem You need to custonmi ze the certificate-rel ated nanes

rem Save previous PATH val ue
set PATH_SAVE=%ATH%

rem Set environment variabl es
remthe directory where SUN signing tools are installed:

set SI GN_DI R=D:\ Dat a\j ava\j dkl.2.1\bin
remthe directory where to store the certificates:
set SECUR DI R=D: \ Dat a\ xavi er\ gdc99\ code\ security\pl ugi nl. 2

rem Set Path to include JDK signing tools
set PATH=%8I GN_DI R% %PATH%

rem Create identity with new keypair and self-signed certificate
cd %SECUR_DI R%
keyt ool -genkey -alias XLorphelin -dname "cn=Xavi er Lorphelin,
ou=JSource, o=JSource, c=US" -keypass jsource —storepass
j source

rem Export the self-signed certificate
keyt ool -export -alias XLorphelin -file XLCert.cer

rem Del ete environnment vari abl es
set SI GN DI R=
set SECUR_DI R=

rem Restore default PATH
set PATH=%PATH_SAVE%

Listing 16: Generating a certificate for Java 1.2 security model

rem*** Script to sign a JAR file (SUN JDK 1.2) ***
rem You need to customi ze the certificate-rel ated nanes

rem Save previous PATH val ue
set PATH_SAVE=%ATH%

rem Set environment variabl es

remthe name of the JAR file:

set JAR _NAME=connect.j ar

remthe directory that contains the Java classes to be signed:
set CLASSES_DI R=D: \ Dat a\ xavi er\ gdc99\ code\ cl asses

remthe directory where SUN signing tools are installed:

set SIGN_DI R=D:\ Dat a\java\jdkl.2. 1\ bin

remthe directory where to store the certificates:

set SECUR_DI R=D: \ Dat a\ xavi er\ gdc99\ code\ securi ty\ pl ugi nl. 2

rem Set Path to include JDK signing tools
set PATH=%SI| GN_DI R% YPATH%

rem Create a JARfile
cd %CLASSES_DI R%

jar cvf %AR NAVE% *. *

rem Sign JAR file using jarsigner

nmove %AR_NAMEY% %SECUR_DI R%

cd %SECUR_DI R%

jarsigner -verbose -storepass jsource -keypass jsource
% AR_NAME% XLor phel i n

rem Del ete environnment vari abl es
set JAR_NAME=

set CLASSES DI R=

set SIGN_DI R=

set SECUR DI R=

rem Restore default PATH
set PATH=%ATH_SAVE%

Listing 17: Signing an applet for Java 1.2 security model

