This is an automated email from Gerrit. "Bernhard Rosenkränzer <b...@baylibre.com>" just uploaded a new patch set to Gerrit, which you can find at https://review.openocd.org/c/openocd/+/8263
-- gerrit commit 3b006c00e01774229edab54833862bbbada9726b Author: Bernhard Rosenkränzer <b...@baylibre.com> Date: Sun May 12 21:47:21 2024 +0200 Add configs for Espressif RISC-V targets. This adds configs for ESP32-C2, ESP32-C3, ESP32-C6 and ESP-H2. This is based on the work of Erhan Kurubas <erhan.kuru...@espressif.com> Change-Id: I23039d09252cb8a6d2fba6581733efc58e8061ce Signed-off-by: Erhan Kurubas <erhan.kuru...@espressif.com> Signed-off-by: Bernhard Rosenkränzer <b...@baylibre.com> diff --git a/tcl/board/esp32c2-ftdi.cfg b/tcl/board/esp32c2-ftdi.cfg new file mode 100644 index 0000000000..bc2b82f5aa --- /dev/null +++ b/tcl/board/esp32c2-ftdi.cfg @@ -0,0 +1,21 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Example OpenOCD configuration file for ESP32-C2 connected via ESP-Prog. +# +# For example, OpenOCD can be started for ESP32-C2 debugging on +# +# openocd -f board/esp32c2-ftdi.cfg +# + +# Source the JTAG interface configuration file +source [find interface/ftdi/esp32_devkitj_v1.cfg] +# Source the ESP32-C2 configuration file +source [find target/esp32c2.cfg] + +# The speed of the JTAG interface, in kHz. If you get DSR/DIR errors (and they +# do not relate to OpenOCD trying to read from a memory range without physical +# memory being present there), you can try lowering this. +# +# On DevKit-J, this can go as high as 20MHz if CPU frequency is 80MHz, or 26MHz +# if CPU frequency is 160MHz or 240MHz. +adapter speed 20000 diff --git a/tcl/board/esp32c3-builtin.cfg b/tcl/board/esp32c3-builtin.cfg new file mode 100644 index 0000000000..9e19b1b93c --- /dev/null +++ b/tcl/board/esp32c3-builtin.cfg @@ -0,0 +1,15 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Example OpenOCD configuration file for ESP32-C3 connected via builtin USB-JTAG adapter. +# +# For example, OpenOCD can be started for ESP32-C3 debugging on +# +# openocd -f board/esp32c3-builtin.cfg +# + +# Source the JTAG interface configuration file +source [find interface/esp_usb_jtag.cfg] +# Source the ESP32-C3 configuration file +source [find target/esp32c3.cfg] + +adapter speed 40000 diff --git a/tcl/board/esp32c3-ftdi.cfg b/tcl/board/esp32c3-ftdi.cfg new file mode 100644 index 0000000000..55953742c4 --- /dev/null +++ b/tcl/board/esp32c3-ftdi.cfg @@ -0,0 +1,21 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Example OpenOCD configuration file for ESP32-C3 connected via ESP-Prog. +# +# For example, OpenOCD can be started for ESP32-C3 debugging on +# +# openocd -f board/esp32c3-ftdi.cfg +# + +# Source the JTAG interface configuration file +source [find interface/ftdi/esp32_devkitj_v1.cfg] +# Source the ESP32-C3 configuration file +source [find target/esp32c3.cfg] + +# The speed of the JTAG interface, in kHz. If you get DSR/DIR errors (and they +# do not relate to OpenOCD trying to read from a memory range without physical +# memory being present there), you can try lowering this. +# +# On DevKit-J, this can go as high as 20MHz if CPU frequency is 80MHz, or 26MHz +# if CPU frequency is 160MHz or 240MHz. +adapter speed 20000 diff --git a/tcl/board/esp32c6-builtin.cfg b/tcl/board/esp32c6-builtin.cfg new file mode 100644 index 0000000000..abc96b2d14 --- /dev/null +++ b/tcl/board/esp32c6-builtin.cfg @@ -0,0 +1,15 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Example OpenOCD configuration file for ESP32-C6 connected via builtin USB-JTAG adapter. +# +# For example, OpenOCD can be started for ESP32-C6 debugging on +# +# openocd -f board/esp32c6-builtin.cfg +# + +# Source the JTAG interface configuration file +source [find interface/esp_usb_jtag.cfg] +# Source the ESP32-C6 configuration file +source [find target/esp32c6.cfg] + +adapter speed 40000 diff --git a/tcl/board/esp32h2-builtin.cfg b/tcl/board/esp32h2-builtin.cfg new file mode 100644 index 0000000000..e98d1faf4f --- /dev/null +++ b/tcl/board/esp32h2-builtin.cfg @@ -0,0 +1,15 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Example OpenOCD configuration file for ESP32-H2 connected via builtin USB-JTAG adapter. +# +# For example, OpenOCD can be started for ESP32-H2 debugging on +# +# openocd -f board/esp32h2-builtin.cfg +# + +# Source the JTAG interface configuration file +source [find interface/esp_usb_jtag.cfg] +# Source the ESP32-C3 configuration file +source [find target/esp32h2.cfg] + +adapter speed 40000 diff --git a/tcl/target/esp32c2.cfg b/tcl/target/esp32c2.cfg new file mode 100644 index 0000000000..42aeb0adea --- /dev/null +++ b/tcl/target/esp32c2.cfg @@ -0,0 +1,117 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# + +# Source the ESP common configuration file. +source [find target/esp_common.cfg] + +# Target specific global variables +set _CHIPNAME "riscv" +set _CPUTAPID 0x0000cc25 +set _ESP_ARCH "riscv" +set _ONLYCPU 1 +set _ESP_SMP_TARGET 0 +set _ESP_SMP_BREAK 0 +set _ESP_EFUSE_MAC_ADDR_REG 0x60008840 + +# Target specific functions should be implemented for each riscv chips. +proc riscv_wdt_disable { } { + # Halt event can occur during config phase (before "init" is done). + # Ignore it since mww commands don't work at that time. + if { [string compare [command mode] config] == 0 } { + return + } + + # Timer Group 0 WDT + mww 0x6001f064 0x50D83AA1 + mww 0x6001F048 0 + # RTC WDT + mww 0x6000809C 0x50D83AA1 + mww 0x60008084 0 + # SWD + mww 0x600080A4 0x8F1D312A + mww 0x600080A0 0x84B00000 +} + +proc riscv_soc_reset { } { + global _RISCV_DMCONTROL + + # This procedure does "digital system reset", i.e. resets + # all the peripherals except for the RTC block. + # It is called from reset-assert-post target event callback, + # after assert_reset procedure was called. + # Since we need the hart to to execute a write to RTC_CNTL_SW_SYS_RST, + # temporarily take it out of reset. Save the dmcontrol state before + # doing so. + riscv dmi_write $_RISCV_DMCONTROL 0x80000001 + # Trigger the reset + mww 0x60008000 0x9c00a000 + # Workaround for stuck in cpu start during calibration. + # By writing zero to TIMG_RTCCALICFG_REG, we are disabling calibration + mww 0x6001F068 0 + # Wait for the reset to happen + sleep 10 + poll + # Disable the watchdogs again + riscv_wdt_disable + + # Here debugger reads allresumeack and allhalted bits as set (0x330a2) + # We will clean allhalted state by resuming the core. + riscv dmi_write $_RISCV_DMCONTROL 0x40000001 + + # Put the hart back into reset state. Note that we need to keep haltreq set. + riscv dmi_write $_RISCV_DMCONTROL 0x80000003 +} + +proc riscv_memprot_is_enabled { } { + global _RISCV_ABS_CMD _RISCV_ABS_DATA0 + + # PMPADDR 0-1 covers entire valid IRAM range and PMPADDR 2-3 covers entire DRAM region + # pmpcfg0 holds the configuration for the PMP 0-3 address registers + + # read pmpcfg0 and extract into 8-bit variables. + riscv dmi_write $_RISCV_ABS_CMD 0x2203a0 + set pmpcfg0 [riscv dmi_read $_RISCV_ABS_DATA0] + + set pmp0cfg [expr {($pmpcfg0 >> (8 * 0)) & 0xFF}] + set pmp1cfg [expr {($pmpcfg0 >> (8 * 1)) & 0xFF}] + set pmp2cfg [expr {($pmpcfg0 >> (8 * 2)) & 0xFF}] + set pmp3cfg [expr {($pmpcfg0 >> (8 * 3)) & 0xFF}] + + # read PMPADDR 0-3 + riscv dmi_write $_RISCV_ABS_CMD 0x2203b0 + set pmpaddr0 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}] + riscv dmi_write $_RISCV_ABS_CMD 0x2203b1 + set pmpaddr1 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}] + riscv dmi_write $_RISCV_ABS_CMD 0x2203b2 + set pmpaddr2 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}] + riscv dmi_write $_RISCV_ABS_CMD 0x2203b3 + set pmpaddr3 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}] + + set IRAM_LOW 0x40380000 + set IRAM_HIGH 0x403C0000 + set DRAM_LOW 0x3FCA0000 + set DRAM_HIGH 0x3FCE0000 + set PMP_RWX 0x07 + set PMP_RW 0x03 + + # The lock bit remains unset during the execution of the 2nd stage bootloader. + # Thus we do not perform a lock bit check for IRAM and DRAM regions. + + # Check OpenOCD can write and execute from IRAM. + if {$pmpaddr0 >= $IRAM_LOW && $pmpaddr1 <= $IRAM_HIGH} { + if {($pmp0cfg & $PMP_RWX) != 0 || ($pmp1cfg & $PMP_RWX) != $PMP_RWX} { + return 1 + } + } + + # Check OpenOCD can read/write entire DRAM region. + if {$pmpaddr2 >= $DRAM_LOW && $pmpaddr3 <= $DRAM_HIGH} { + if {($pmp2cfg & $PMP_RW) != 0 && ($pmp3cfg & $PMP_RW) != $PMP_RW} { + return 1 + } + } + + return 0 +} + +create_esp_target $_ESP_ARCH diff --git a/tcl/target/esp32c3.cfg b/tcl/target/esp32c3.cfg new file mode 100644 index 0000000000..d266ad58cd --- /dev/null +++ b/tcl/target/esp32c3.cfg @@ -0,0 +1,81 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# + +# Source the ESP common configuration file. +source [find target/esp_common.cfg] + +# Target specific global variables +set _CHIPNAME "riscv" +set _CPUTAPID 0x00005c25 +set _ESP_ARCH "riscv" +set _ONLYCPU 1 +set _ESP_SMP_TARGET 0 +set _ESP_SMP_BREAK 0 +set _ESP_EFUSE_MAC_ADDR_REG 0x60008844 + +# Target specific functions should be implemented for each riscv chips. +proc riscv_wdt_disable { } { + # Halt event can occur during config phase (before "init" is done). + # Ignore it since mww commands don't work at that time. + if { [string compare [command mode] config] == 0 } { + return + } + + # Timer Group 0 & 1 WDTs + mww 0x6001f064 0x50D83AA1 + mww 0x6001F048 0 + mww 0x60020064 0x50D83AA1 + mww 0x60020048 0 + # RTC WDT + mww 0x600080a8 0x50D83AA1 + mww 0x60008090 0 + # SWD + mww 0x600080b0 0x8F1D312A + mww 0x600080ac 0x84B00000 +} + +# This is almost identical with the esp32c2_soc_reset. +# Will be refactored with the other common settings. +proc riscv_soc_reset { } { + global _RISCV_DMCONTROL + + # This procedure does "digital system reset", i.e. resets + # all the peripherals except for the RTC block. + # It is called from reset-assert-post target event callback, + # after assert_reset procedure was called. + # Since we need the hart to to execute a write to RTC_CNTL_SW_SYS_RST, + # temporarily take it out of reset. Save the dmcontrol state before + # doing so. + riscv dmi_write $_RISCV_DMCONTROL 0x80000001 + # Trigger the reset + mww 0x60008000 0x9c00a000 + # Workaround for stuck in cpu start during calibration. + # By writing zero to TIMG_RTCCALICFG_REG, we are disabling calibration + mww 0x6001F068 0 + # Wait for the reset to happen + sleep 10 + poll + # Disable the watchdogs again + riscv_wdt_disable + + # Here debugger reads allresumeack and allhalted bits as set (0x330a2) + # We will clean allhalted state by resuming the core. + riscv dmi_write $_RISCV_DMCONTROL 0x40000001 + + # Put the hart back into reset state. Note that we need to keep haltreq set. + riscv dmi_write $_RISCV_DMCONTROL 0x80000003 +} + +proc riscv_memprot_is_enabled { } { + # IRAM0 PMS lock, SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_0_REG + if { [get_mmr_bit 0x600C10A8 0] != 0 } { + return 1 + } + # DRAM0 PMS lock, SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_0_REG + if { [get_mmr_bit 0x600C10C0 0] != 0 } { + return 1 + } + return 0 +} + +create_esp_target $_ESP_ARCH diff --git a/tcl/target/esp32c6.cfg b/tcl/target/esp32c6.cfg new file mode 100644 index 0000000000..e1ef10a852 --- /dev/null +++ b/tcl/target/esp32c6.cfg @@ -0,0 +1,142 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# + +# Source the ESP common configuration file. +source [find target/esp_common.cfg] + +# Target specific global variables +set _CHIPNAME "riscv" +set _CPUTAPID 0x0000dc25 +set _ESP_ARCH "riscv" +set _ONLYCPU 1 +set _ESP_SMP_TARGET 0 +set _ESP_SMP_BREAK 0 +set _ESP_EFUSE_MAC_ADDR_REG 0x600B0844 + +# Target specific functions should be implemented for each riscv chips. +proc riscv_wdt_disable { } { + # Halt event can occur during config phase (before "init" is done). + # Ignore it since mww commands don't work at that time. + if { [string compare [command mode] config] == 0 } { + return + } + + # Timer Group 0 & 1 WDTs + mww 0x60008064 0x50D83AA1 + mww 0x60008048 0 + mww 0x60009064 0x50D83AA1 + mww 0x60009048 0 + # LP_WDT_RTC + mww 0x600b1c18 0x50D83AA1 + mww 0x600B1C00 0 + # LP_WDT_SWD + mww 0x600b1c20 0x50D83AA1 + mww 0x600b1c1c 0x40000000 +} + +proc riscv_soc_reset { } { + global _RISCV_DMCONTROL _RISCV_SB_CS _RISCV_SB_ADDR0 _RISCV_SB_DATA0 + + riscv dmi_write $_RISCV_DMCONTROL 0x80000001 + riscv dmi_write $_RISCV_SB_CS 0x48000 + riscv dmi_write $_RISCV_SB_ADDR0 0x600b1034 + riscv dmi_write $_RISCV_SB_DATA0 0x80000000 + # clear dmactive to clear sbbusy otherwise debug module gets stuck + riscv dmi_write $_RISCV_DMCONTROL 0 + + riscv dmi_write $_RISCV_SB_CS 0x48000 + riscv dmi_write $_RISCV_SB_ADDR0 0x600b1038 + riscv dmi_write $_RISCV_SB_DATA0 0x10000000 + + # clear dmactive to clear sbbusy otherwise debug module gets stuck + riscv dmi_write $_RISCV_DMCONTROL 0 + riscv dmi_write $_RISCV_DMCONTROL 0x40000001 + # Here debugger reads dmstatus as 0xc03a2 + + # Wait for the reset to happen + sleep 10 + poll + # Here debugger reads dmstatus as 0x3a2 + + # Disable the watchdogs again + riscv_wdt_disable + + # Here debugger reads anyhalted and allhalted bits as set (0x3a2) + # We will clean allhalted state by resuming the core. + riscv dmi_write $_RISCV_DMCONTROL 0x40000001 + + # Put the hart back into reset state. Note that we need to keep haltreq set. + riscv dmi_write $_RISCV_DMCONTROL 0x80000003 +} + +proc riscv_memprot_is_enabled { } { + global _RISCV_ABS_CMD _RISCV_ABS_DATA0 + + # If IRAM/DRAM split is enabled TOR address match mode is used. + # If IRAM/DRAM split is disabled NAPOT mode is used. + # In order to determine if the IRAM/DRAM regions are protected against RWX/RW, + # it is necessary to first read the mode and then apply the appropriate method for checking. + # We can understand the mode reading pmp5cfg in pmpcfg1 register. + # If it is none we know that pmp6cfg and pmp7cfg is in TOR mode. + + # Read pmpcfg1 and extract into 8-bit variables. + riscv dmi_write $_RISCV_ABS_CMD 0x2203a1 + set pmpcfg1 [riscv dmi_read $_RISCV_ABS_DATA0] + + set pmp5cfg [expr {($pmpcfg1 >> (8 * 1)) & 0xFF}] + set pmp6cfg [expr {($pmpcfg1 >> (8 * 2)) & 0xFF}] + set pmp7cfg [expr {($pmpcfg1 >> (8 * 3)) & 0xFF}] + + set IRAM_LOW 0x40800000 + set IRAM_HIGH 0x40880000 + set DRAM_LOW 0x40800000 + set DRAM_HIGH 0x40880000 + set PMP_RWX 0x07 + set PMP_RW 0x03 + set PMP_A [expr {($pmp5cfg >> 3) & 0x03}] + + if {$PMP_A == 0} { + # TOR mode used to protect valid address space. + + # Read PMPADDR 5-7 + riscv dmi_write $_RISCV_ABS_CMD 0x2203b5 + set pmpaddr5 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}] + riscv dmi_write $_RISCV_ABS_CMD 0x2203b6 + set pmpaddr6 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}] + riscv dmi_write $_RISCV_ABS_CMD 0x2203b7 + set pmpaddr7 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}] + + # The lock bit remains unset during the execution of the 2nd stage bootloader. + # Thus we do not perform a lock bit check for IRAM and DRAM regions. + + # Check OpenOCD can write and execute from IRAM. + if {$pmpaddr5 >= $IRAM_LOW && $pmpaddr6 <= $IRAM_HIGH} { + if {($pmp5cfg & $PMP_RWX) != 0 || ($pmp6cfg & $PMP_RWX) != $PMP_RWX} { + return 1 + } + } + + # Check OpenOCD can read/write entire DRAM region. + if {$pmpaddr7 >= $DRAM_LOW && $pmpaddr7 <= $DRAM_HIGH} { + if {($pmp7cfg & $PMP_RW) != $PMP_RW} { + return 1 + } + } + } elseif {$PMP_A == 3} { + # NAPOT mode used to protect valid address space. + + # Read PMPADDR 5 + riscv dmi_write $_RISCV_ABS_CMD 0x2203b5 + set pmpaddr5 [expr {[riscv dmi_read $_RISCV_ABS_DATA0]}] + + # Expected value written to the pmpaddr5 + set pmpaddr_napot [expr {($IRAM_LOW | (($IRAM_HIGH - $IRAM_LOW - 1) >> 1)) >> 2}] + if {($pmpaddr_napot != $pmpaddr5) || ($pmp5cfg & $PMP_RWX) != $PMP_RWX} { + return 1 + } + } + + return 0 +} + +create_esp_target $_ESP_ARCH diff --git a/tcl/target/esp32h2.cfg b/tcl/target/esp32h2.cfg new file mode 100644 index 0000000000..45f598f731 --- /dev/null +++ b/tcl/target/esp32h2.cfg @@ -0,0 +1,122 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# + +# Source the ESP common configuration file. +source [find target/esp_common.cfg] + +# Target specific global variables +set _CHIPNAME "riscv" +set _CPUTAPID 0x00010c25 +set _ESP_ARCH "riscv" +set _ONLYCPU 1 +set _ESP_SMP_TARGET 0 +set _ESP_SMP_BREAK 0 +set _ESP_EFUSE_MAC_ADDR_REG 0x600B0844 + +# Target specific functions should be implemented for each riscv chips. +proc riscv_wdt_disable { } { + # Halt event can occur during config phase (before "init" is done). + # Ignore it since mww commands don't work at that time. + if { [string compare [command mode] config] == 0 } { + return + } + + # Timer Group 0 & 1 WDTs + mww 0x60009064 0x50D83AA1 + mww 0x60009048 0 + mww 0x6000A064 0x50D83AA1 + mww 0x6000A048 0 + # WDT_RTC + #mww 0x600b1c18 0x50D83AA1 + #mww 0x600B1C00 0 + # WDT_SWD + #mww 0x600b1c20 0x8F1D312A + #mww 0x600b1c1c 0x84B00000 +} + +proc riscv_soc_reset { } { + global _RISCV_DMCONTROL _RISCV_SB_CS _RISCV_SB_ADDR0 _RISCV_SB_DATA0 + + riscv dmi_write $_RISCV_DMCONTROL 0x80000001 + riscv dmi_write $_RISCV_SB_CS 0x48000 + riscv dmi_write $_RISCV_SB_ADDR0 0x600b1034 + riscv dmi_write $_RISCV_SB_DATA0 0x80000000 + # clear dmactive to clear sbbusy otherwise debug module gets stuck + riscv dmi_write $_RISCV_DMCONTROL 0 + + riscv dmi_write $_RISCV_SB_CS 0x48000 + riscv dmi_write $_RISCV_SB_ADDR0 0x600b1038 + riscv dmi_write $_RISCV_SB_DATA0 0x10000000 + + # clear dmactive to clear sbbusy otherwise debug module gets stuck + riscv dmi_write $_RISCV_DMCONTROL 0 + riscv dmi_write $_RISCV_DMCONTROL 0x40000001 + # Here debugger reads dmstatus as 0xc03a2 + + # Wait for the reset to happen + sleep 10 + poll + # Here debugger reads dmstatus as 0x3a2 + + # Disable the watchdogs again + riscv_wdt_disable + + # Here debugger reads anyhalted and allhalted bits as set (0x3a2) + # We will clean allhalted state by resuming the core. + riscv dmi_write $_RISCV_DMCONTROL 0x40000001 + + # Put the hart back into reset state. Note that we need to keep haltreq set. + riscv dmi_write $_RISCV_DMCONTROL 0x80000003 +} + +proc riscv_memprot_is_enabled { } { + global _RISCV_ABS_CMD _RISCV_ABS_DATA0 + # If IRAM/DRAM split is enabled, PMPADDR 5-6 will cover valid IRAM region and PMPADDR 7 will cover valid DRAM region + # Only TOR mode is used for IRAM and DRAM protections. + + # Read pmpcfg1 and extract into 8-bit variables. + riscv dmi_write $_RISCV_ABS_CMD 0x2203a1 + set pmpcfg1 [riscv dmi_read $_RISCV_ABS_DATA0] + + set pmp5cfg [expr {($pmpcfg1 >> (8 * 1)) & 0xFF}] + set pmp6cfg [expr {($pmpcfg1 >> (8 * 2)) & 0xFF}] + set pmp7cfg [expr {($pmpcfg1 >> (8 * 3)) & 0xFF}] + + # Read PMPADDR 5-7 + riscv dmi_write $_RISCV_ABS_CMD 0x2203b5 + set pmpaddr5 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}] + riscv dmi_write $_RISCV_ABS_CMD 0x2203b6 + set pmpaddr6 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}] + riscv dmi_write $_RISCV_ABS_CMD 0x2203b7 + set pmpaddr7 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}] + + set IRAM_LOW 0x40800000 + set IRAM_HIGH 0x40850000 + set DRAM_LOW 0x40800000 + set DRAM_HIGH 0x40850000 + + set PMP_RWX 0x07 + set PMP_RW 0x03 + + # The lock bit remains unset during the execution of the 2nd stage bootloader. + # Thus, we do not perform a lock bit check for IRAM and DRAM regions. + + # Check OpenOCD can write and execute from IRAM. + if {$pmpaddr5 >= $IRAM_LOW && $pmpaddr6 <= $IRAM_HIGH} { + if {($pmp5cfg & $PMP_RWX) != 0 || ($pmp6cfg & $PMP_RWX) != $PMP_RWX} { + return 1 + } + } + + # Check OpenOCD can read/write entire DRAM region. + # If IRAM/DRAM split is disabled, pmpaddr7 will be zero, checking only IRAM region is enough. + if {$pmpaddr7 != 0 && $pmpaddr7 >= $DRAM_LOW && $pmpaddr7 <= $DRAM_HIGH} { + if {($pmp7cfg & $PMP_RW) != $PMP_RW} { + return 1 + } + } + + return 0 +} + +create_esp_target $_ESP_ARCH diff --git a/tcl/target/esp_common.cfg b/tcl/target/esp_common.cfg index ac8cd6a198..af2f6ad2ca 100644 --- a/tcl/target/esp_common.cfg +++ b/tcl/target/esp_common.cfg @@ -6,6 +6,14 @@ source [find bitsbytes.tcl] source [find memory.tcl] source [find mmr_helpers.tcl] +# Riscv Debug Module Registers which are used around esp configuration files. +set _RISCV_ABS_DATA0 0x04 +set _RISCV_DMCONTROL 0x10 +set _RISCV_ABS_CMD 0x17 +set _RISCV_SB_CS 0x38 +set _RISCV_SB_ADDR0 0x39 +set _RISCV_SB_DATA0 0x3C + # Common ESP chips definitions # Espressif supports only NuttX in the upstream. @@ -69,13 +77,12 @@ proc create_esp_target { ARCH } { set_esp_common_variables create_esp_jtag create_openocd_targets - configure_openocd_events + configure_openocd_events $ARCH if { $ARCH == "xtensa"} { configure_esp_xtensa_default_settings } else { - # riscv targets are not upstreamed yet. - # they can be found at the official Espressif fork. + configure_esp_riscv_default_settings } } @@ -131,7 +138,6 @@ proc configure_event_halted { } { $_TARGETNAME_0 configure -event halted { global _ESP_WDT_DISABLE $_ESP_WDT_DISABLE - esp halted_event_handler } } @@ -167,12 +173,25 @@ proc configure_event_gdb_attach { } { } } -proc configure_openocd_events { } { +proc configure_openocd_events { ARCH } { + if { $ARCH == "riscv" } { + configure_event_halted + } configure_event_examine_end configure_event_reset_assert_post configure_event_gdb_attach } +proc configure_esp_riscv_default_settings { } { + gdb_breakpoint_override hard + riscv set_reset_timeout_sec 2 + riscv set_command_timeout_sec 5 + riscv set_mem_access sysbus progbuf abstract + riscv set_ebreakm on + riscv set_ebreaks on + riscv set_ebreaku on +} + proc configure_esp_xtensa_default_settings { } { global _TARGETNAME_0 _ESP_SMP_BREAK _FLASH_VOLTAGE _CHIPNAME --