[AMD Official Use Only - General]

Hello everyone,

I am currently working on updating a signature verification function in C++ and 
I am a bit stuck. I am trying to replace the deprecated 1.1.1 functions to the 
appropriate 3.0 versions. The function takes in 2 certificate objects (parent 
and cert), which are not x509 certificates, but certificates the company had 
previously defined. Using the contents from parent we create an RSA public key 
and using the contents from cert we create the digest and grab the signature to 
verify.

In the 1.1.1 version we were using the RSA Object and the rsa_set0_key function 
to create the RSA public key and then used RSA_public_decrypt to decrypt the 
signature and RSA_verify_PKCS1_PSS to verify it. This whole workflow is now 
deprecated.

//OPENSSL 1.1.1 Code
SEV_ERROR_CODE AMDCert::amd_cert_validate_sig(const amd_cert *cert,
                                              const amd_cert *parent,
                                              ePSP_DEVICE_TYPE device_type)
{
    SEV_ERROR_CODE cmd_ret = ERROR_INVALID_CERTIFICATE;
    hmac_sha_256 sha_digest_256;
    hmac_sha_512 sha_digest_384;
    SHA_TYPE algo = SHA_TYPE_256;
    uint8_t *sha_digest = NULL;
    size_t sha_length = 0;

    RSA *rsa_pub_key = NULL;
    BIGNUM *modulus = NULL;
    BIGNUM *pub_exp = NULL;
    EVP_MD_CTX* md_ctx = NULL;
    uint32_t sig_len = cert->modulus_size/8;

    uint32_t digest_len = 0;
    uint8_t decrypted[AMD_CERT_KEY_BYTES_4K] = {0}; // TODO wrong length
    uint8_t signature[AMD_CERT_KEY_BYTES_4K] = {0};
    uint32_t fixed_offset = offsetof(amd_cert, pub_exp);    // 64 bytes

    do {
        if (!cert || !parent) {
            cmd_ret = ERROR_INVALID_PARAM;
           break;
        }

        // Set SHA_TYPE to 256 bit or 384 bit depending on device_type
        if (device_type == PSP_DEVICE_TYPE_NAPLES) {
            algo = SHA_TYPE_256;
            sha_digest = sha_digest_256;
            sha_length = sizeof(hmac_sha_256);
        }
        else /*if (ROME/MILAN)*/ {
            algo = SHA_TYPE_384;
            sha_digest = sha_digest_384;
            sha_length = sizeof(hmac_sha_512);
        }

        // Memzero all the buffers
        memset(sha_digest, 0, sha_length);
        memset(decrypted, 0, sizeof(decrypted));
        memset(signature, 0, sizeof(signature));

        // New up the RSA key
        rsa_pub_key = RSA_new();

        // Convert the parent to an RSA key to pass into RSA_verify
        modulus = BN_lebin2bn((uint8_t *)&parent->modulus, 
parent->modulus_size/8, NULL);  // n    // New's up BigNum
        pub_exp = BN_lebin2bn((uint8_t *)&parent->pub_exp, 
parent->pub_exp_size/8, NULL);   // e
        if (RSA_set0_key(rsa_pub_key, modulus, pub_exp, NULL) != 1)
            break;

                             // Create digest from certificate
        md_ctx = EVP_MD_CTX_create();
        if (EVP_DigestInit(md_ctx, (algo == SHA_TYPE_256) ? EVP_sha256() : 
EVP_sha384()) <= 0)
            break;
        if (EVP_DigestUpdate(md_ctx, cert, fixed_offset) <= 0)     // Calls 
SHA256_UPDATE
            break;
        if (EVP_DigestUpdate(md_ctx, &cert->pub_exp, cert->pub_exp_size/8) <= 0)
            break;
        if (EVP_DigestUpdate(md_ctx, &cert->modulus, cert->modulus_size/8) <= 0)
            break;
        EVP_DigestFinal(md_ctx, sha_digest, &digest_len);

        // Swap the bytes of the signature
        memcpy(signature, &cert->sig, parent->modulus_size/8);
        if (!sev::reverse_bytes(signature, parent->modulus_size/8))
            break;

        // Now we will verify the signature. Start by a RAW decrypt of the 
signature
        if (RSA_public_decrypt(sig_len, signature, decrypted, rsa_pub_key, 
RSA_NO_PADDING) == -1)
            break;

        // Verify the data
        // SLen of -2 means salt length is recovered from the signature
        if (RSA_verify_PKCS1_PSS(rsa_pub_key, sha_digest,
                                (algo == SHA_TYPE_256) ? EVP_sha256() : 
EVP_sha384(),
                                decrypted, -2) != 1)
        {
            break;
        }

        cmd_ret = STATUS_SUCCESS;
    } while (0);

    // Free the keys and contexts
    if (rsa_pub_key)
        RSA_free(rsa_pub_key);

    if (md_ctx)
        EVP_MD_CTX_free(md_ctx);

    return cmd_ret;
}

My current attempt to do this update is first creating an EVP_PKEY object which 
will now store the public key and inputting the same data from parent by using 
the EVP_PKEY_fromdata generation function. I build my OSSL_PARAMETERS using 
OSSL_PARAM_BLD to which I push the data from parent. Lastly for the 
verification I am using the EVP_DigestVerifyFinal procedure. I create the 
digest using EVP_DigestVerifyInit and EVP_DigestVerifyUpdate and passing in the 
same data from cert that we were using in the 1.1.1 version of the function. I 
have tried different approaches to both creating the key and the verification 
procedure, but I cannot seem to get it to work.

// OPENSSL 3.0 code
SEV_ERROR_CODE AMDCert::amd_cert_validate_sig(const amd_cert *cert,
                                              const amd_cert *parent,
                                              ePSP_DEVICE_TYPE device_type)
{
    SEV_ERROR_CODE cmd_ret = ERROR_INVALID_CERTIFICATE;
    hmac_sha_256 sha_digest_256;
    hmac_sha_512 sha_digest_384;
    SHA_TYPE algo = SHA_TYPE_256;
    uint8_t *sha_digest = NULL;
    size_t sha_length = 0;

    EVP_PKEY *rsa_pub_key = EVP_PKEY_new();
    RSA *old_rsa_pub_key = NULL;
    BIGNUM *modulus = NULL;
    BIGNUM *pub_exp = NULL;
    EVP_PKEY_CTX *key_gen_ctx = NULL;
    uint32_t sig_len = cert->modulus_size/8;
    EVP_MD_CTX* verify_md_ctx = NULL;
    uint32_t digest_len = 0;

    uint8_t signature[AMD_CERT_KEY_BYTES_4K] = {0};
    uint32_t fixed_offset = offsetof(amd_cert, pub_exp);    // 64 bytes

    do {
        if (!cert || !parent) {
            cmd_ret = ERROR_INVALID_PARAM;
            break;
        }

        // Set SHA_TYPE to 256 bit or 384 bit depending on device_type
        if (device_type == PSP_DEVICE_TYPE_NAPLES) {
            algo = SHA_TYPE_256;
            sha_digest = sha_digest_256;
            sha_length = sizeof(hmac_sha_256);
        }
        else /*if (ROME/MILAN)*/ {
            algo = SHA_TYPE_384;
            sha_digest = sha_digest_384;
            sha_length = sizeof(hmac_sha_512);
        }

        // Memzero all the buffers
        memset(sha_digest, 0, sha_length);
        memset(signature, 0, sizeof(signature));

        //Convert the parent to an RSA key to pass into EVP_DigesetVerify
        modulus = BN_lebin2bn((uint8_t *)&parent->modulus, 
parent->modulus_size/8, NULL);  // n    // New's up BigNum
        pub_exp = BN_lebin2bn((uint8_t *)&parent->pub_exp, 
parent->pub_exp_size/8, NULL);   // e

        // Creating parameter build
        OSSL_PARAM_BLD *params_build = OSSL_PARAM_BLD_new();
        if ( params_build == NULL ) {
            cout << "Init fails " << endl;
        }

        // Push modulus
        if ( !OSSL_PARAM_BLD_push_BN(params_build, "n", modulus) ) {
            cout << "Error: failed to push modulus into param build." << endl;
            break;
        }

        // Push pub_exp
        if ( !OSSL_PARAM_BLD_push_BN(params_build, "e", pub_exp) ) {
            cout << "Error: failed to push exponent into param build." << endl;
            break;
        }

        // Build parameters
        OSSL_PARAM *params = OSSL_PARAM_BLD_to_param(params_build);
        if ( params == NULL ) {
            cout << "Error: building parameters." << endl;
            break;
              }

        // Free BLD struct
        OSSL_PARAM_BLD_free(params_build);

        // Create key_gen context
        key_gen_ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);

        //EVP_PKEY_keygen_init(pctx);
        if(EVP_PKEY_fromdata_init(key_gen_ctx) != 1) {
            cout << "failed to initialize key creation." << endl;
            break;
        }

        // Generate rsa public key
        if(EVP_PKEY_fromdata(key_gen_ctx, &rsa_pub_key, EVP_PKEY_PUBLIC_KEY, 
params) != 1) {
            cout << "key generation breaks" << endl;
            break;
        }

        // Free PARAM structure
        OSSL_PARAM_free(params);

        // Swap the bytes of the signature
        memcpy(signature, &cert->sig, parent->modulus_size/8);
        if (!sev::reverse_bytes(signature, parent->modulus_size/8))
            break;

        // Create digest context
        verify_md_ctx = EVP_MD_CTX_create();


        if (!verify_md_ctx) {
            cout << "Error allocating pkey context " << endl;;
            break;
        }

        if (EVP_DigestVerifyInit(verify_md_ctx, NULL, (algo == SHA_TYPE_256) ? 
EVP_sha256() : EVP_sha384(), NULL, rsa_pub_key) <= 0) {
            cout << "Init fails " << endl;
            break;
        }

        if (EVP_DigestVerifyUpdate(verify_md_ctx, cert, fixed_offset) <= 0)     
// Calls SHA256_UPDATE
            break;
        if (EVP_DigestVerifyUpdate(verify_md_ctx, &cert->pub_exp, 
cert->pub_exp_size/8) <= 0)
            break;
        if (EVP_DigestVerifyUpdate(verify_md_ctx, &cert->modulus, 
cert->modulus_size/8) <= 0)
            break;

        // Get Verify return
        int ret = EVP_DigestVerifyFinal(verify_md_ctx,signature,sig_len);
        if (ret == 0) {
            cout << "Verify digest fails" << endl;
            break;
        } else if (ret < 0) {
            cout << "Verify error" << endl;
            break;
        }

        cmd_ret = STATUS_SUCCESS;
    } while (0);

    // Free the keys and contexts
    if (rsa_pub_key)
        EVP_PKEY_free(rsa_pub_key);
    if (key_gen_ctx)
        EVP_PKEY_CTX_free(key_gen_ctx);
    if (verify_md_ctx)
        EVP_MD_CTX_free(verify_md_ctx);

    return cmd_ret;
}

Is this the correct way of creating RSA keys now? Where is my logic failing? 
Can the same type of procedure even be done on 3.0? Any advice would be really 
appreciated.

Thank you in advance,

Diego Gonzalez Villalobos
Software System Designer I

Reply via email to