Hello community,

here is the log from the commit of package python-datashader for 
openSUSE:Factory checked in at 2018-06-13 15:38:07
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Comparing /work/SRC/openSUSE:Factory/python-datashader (Old)
 and      /work/SRC/openSUSE:Factory/.python-datashader.new (New)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Package is "python-datashader"

Wed Jun 13 15:38:07 2018 rev:2 rq:615177 version:0.6.5

Changes:
--------
--- /work/SRC/openSUSE:Factory/python-datashader/python-datashader.changes      
2018-06-03 12:33:51.989327091 +0200
+++ /work/SRC/openSUSE:Factory/.python-datashader.new/python-datashader.changes 
2018-06-13 15:38:36.130300752 +0200
@@ -1,0 +2,5 @@
+Thu Jun  7 20:30:20 UTC 2018 - [email protected]
+
+- Fix some grammar issues.
+
+-------------------------------------------------------------------

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Other differences:
------------------
++++++ python-datashader.spec ++++++
--- /var/tmp/diff_new_pack.rl8KZg/_old  2018-06-13 15:38:37.614246143 +0200
+++ /var/tmp/diff_new_pack.rl8KZg/_new  2018-06-13 15:38:37.618245996 +0200
@@ -13,6 +13,7 @@
 # published by the Open Source Initiative.
 
 # Please submit bugfixes or comments via http://bugs.opensuse.org/
+#
 
 
 %{?!python_module:%define python_module() python-%{**} python3-%{**}}
@@ -24,10 +25,10 @@
 Name:           python-datashader
 Version:        0.6.5
 Release:        0
-License:        BSD-3-Clause
 Summary:        Data visualization toolchain based on aggregating into a grid
-Url:            http://github.com/bokeh/datashader
+License:        BSD-3-Clause
 Group:          Development/Languages/Python
+Url:            http://github.com/bokeh/datashader
 Source:         https://github.com/bokeh/datashader/archive/%{version}.tar.gz
 BuildRequires:  %{python_module devel}
 BuildRequires:  %{python_module setuptools}
@@ -40,8 +41,8 @@
 BuildRequires:  %{python_module PyYAML}
 BuildRequires:  %{python_module bokeh}
 BuildRequires:  %{python_module colorcet}
-BuildRequires:  %{python_module dask}
 BuildRequires:  %{python_module dask-dataframe}
+BuildRequires:  %{python_module dask}
 BuildRequires:  %{python_module fastparquet}
 BuildRequires:  %{python_module numba >= 0.24.0}
 BuildRequires:  %{python_module numpy >= 1.7}
@@ -80,14 +81,14 @@
 transforming incoming data into an onscreen or printed image, with
 parameters that can be specified beforehand that affect the final
 result.  While this approach works for small collections of data that
-can be viewed in their entirety, for large datasets the visualization
+can be viewed in their entirety, the visualization for large datasets
 is often the only way to understand what the data consists of, and
 there is no objective way to set the parameters to reveal this data.  
 
 The datashader library breaks up the rendering pipeline into a series
 of stages where user-defined computations can be performed, allowing
 the visualization to adapt to and reveal the underlying properties of
-the dataset.  I.e., the datashader pipeline allows computation *on
+the dataset, i.e. the datashader pipeline allows computation *on
 the visualization*, not just on the dataset, allowing it to do
 automatic ranging and scaling that takes the current visualization
 constraints into account.  For instance, where a traditional system


Reply via email to