Hello community,

here is the log from the commit of package python-metakernel for 
openSUSE:Factory checked in at 2019-11-13 13:28:33
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Comparing /work/SRC/openSUSE:Factory/python-metakernel (Old)
 and      /work/SRC/openSUSE:Factory/.python-metakernel.new.2990 (New)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Package is "python-metakernel"

Wed Nov 13 13:28:33 2019 rev:5 rq:747920 version:0.24.3

Changes:
--------
--- /work/SRC/openSUSE:Factory/python-metakernel/python-metakernel.changes      
2019-08-13 13:20:44.085426747 +0200
+++ 
/work/SRC/openSUSE:Factory/.python-metakernel.new.2990/python-metakernel.changes
    2019-11-13 13:28:34.767713416 +0100
@@ -1,0 +2,7 @@
+Tue Nov 12 17:01:17 UTC 2019 - Todd R <[email protected]>
+
+- Update to 0.24.3
+  * Update setup.py
+  * Update activity_magic.py
+
+-------------------------------------------------------------------

Old:
----
  metakernel-0.24.2.tar.gz

New:
----
  metakernel-0.24.3.tar.gz

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Other differences:
------------------
++++++ python-metakernel.spec ++++++
--- /var/tmp/diff_new_pack.pohkqR/_old  2019-11-13 13:28:35.375714053 +0100
+++ /var/tmp/diff_new_pack.pohkqR/_new  2019-11-13 13:28:35.375714053 +0100
@@ -18,7 +18,7 @@
 
 %{?!python_module:%define python_module() python-%{**} python3-%{**}}
 Name:           python-metakernel
-Version:        0.24.2
+Version:        0.24.3
 Release:        0
 Summary:        Metakernel for Jupyter
 License:        BSD-3-Clause

++++++ metakernel-0.24.2.tar.gz -> metakernel-0.24.3.tar.gz ++++++
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/metakernel-0.24.2/PKG-INFO 
new/metakernel-0.24.3/PKG-INFO
--- old/metakernel-0.24.2/PKG-INFO      2019-06-05 10:59:55.000000000 +0200
+++ new/metakernel-0.24.3/PKG-INFO      2019-09-14 17:11:19.000000000 +0200
@@ -1,236 +1,236 @@
-Metadata-Version: 2.1
-Name: metakernel
-Version: 0.24.2
-Summary: Metakernel for Jupyter
-Home-page: https://github.com/Calysto/metakernel
-Author: Steven Silvester
-Author-email: [email protected]
-License: UNKNOWN
-Description: A Jupyter kernel base class in Python which includes core magic 
functions (including help, command and file path completion, parallel and 
distributed processing, downloads, and much more).
-        
-        .. image:: https://badge.fury.io/py/metakernel.png/
-            :target: http://badge.fury.io/py/metakernel
-        
-        .. image:: 
https://coveralls.io/repos/Calysto/metakernel/badge.png?branch=master
-          :target: https://coveralls.io/r/Calysto/metakernel
-        
-        .. image:: https://travis-ci.org/Calysto/metakernel.svg
-          :target: https://travis-ci.org/Calysto/metakernel
-        
-        .. image:: 
https://anaconda.org/conda-forge/metakernel/badges/version.svg
-            :target: https://anaconda.org/conda-forge/metakernel
-        
-        .. image:: 
https://anaconda.org/conda-forge/metakernel/badges/downloads.svg
-            :target: https://anaconda.org/conda-forge/metakernel
-        
-        
-        See Jupyter's docs on `wrapper kernels
-        <http://jupyter-client.readthedocs.io/en/stable/wrapperkernels.html>`_.
-        
-        Additional magics can be installed within the new kernel package under 
a `magics` subpackage.
-        
-        
-        Features
-        -------------
-        - Basic set of line and cell magics for all kernels.
-            - Python magic for accessing python interpreter.
-            - Run kernels in parallel.
-            - Shell magics.
-            - Classroom management magics.
-        - Tab completion for magics and file paths.
-        - Help for magics using ? or Shift+Tab.
-        - Plot magic for setting default plot behavior.
-        
-        Kernels based on Metakernel
-        ---------------------------
-        
-        - matlab_kernel, https://github.com/Calysto/matlab_kernel
-        - octave_kernel, https://github.com/Calysto/octave_kernel
-        - calysto_scheme, https://github.com/Calysto/calysto_scheme
-        - calysto_processing, https://github.com/Calysto/calysto_processing
-        - java9_kernel, https://github.com/Bachmann1234/java9_kernel
-        - xonsh_kernel, https://github.com/Calysto/xonsh_kernel
-        - calysto_hy, https://github.com/Calysto/calysto_hy
-        - gnuplot_kernel, https://github.com/has2k1/gnuplot_kernel
-        - spylon_kernel, https://github.com/mariusvniekerk/spylon-kernel
-        - wolfram_kernel, https://github.com/mmatera/iwolfram
-        - sas_kernel, https://github.com/palmer0914/sas_kernel
-        - pysysh_kernel, https://github.com/Jaesin/psysh_kernel
-        - calysto_bash, https://github.com/Calysto/calysto_bash
-        
-        ... and many others.
-        
-        Installation
-        ----------------
-        You can install Metakernel through ``pip``:
-        
-        .. code::bash
-        
-         pip install metakernel --upgrade
-        
-        Installing `metakernel` from the `conda-forge` channel can be achieved 
by adding `conda-forge` to your channels with:
-        
-        .. code::bash
-        
-         conda config --add channels conda-forge
-        
-        Once the `conda-forge` channel has been enabled, `metakernel` can be 
installed with:
-        
-        .. code::bash
-        
-         conda install metakernel
-        
-        It is possible to list all of the versions of `metakernel` available 
on your platform with:
-        
-        .. code::bash
-        
-         conda search metakernel --channel conda-forge
-        
-        
-        Use MetaKernel Magics in IPython
-        --------------------------------
-        
-        Although MetaKernel is a system for building new kernels, you can use 
a subset of the magics in the IPython kernel.
-        
-        .. code:: python
-        
-         from metakernel import register_ipython_magics
-         register_ipython_magics()
-        
-        Put the following in your (or a system-wide) ``ipython_config.py`` 
file:
-        
-        .. code:: python
-        
-         # /etc/ipython/ipython_config.py
-         c = get_config()
-         startup = [
-            'from metakernel import register_ipython_magics',
-            'register_ipython_magics()',
-         ]
-         c.InteractiveShellApp.exec_lines = startup
-        
-        Use MetaKernel Languages in Parallel
-        
-        To use a MetaKernel language in parallel, do the following:
-        
-        1. Make sure that the Python module `ipyparallel` is installed. In the 
shell, type:
-        
-        .. code:: bash
-        
-          pip install ipyparallel
-        
-        
-        2. To enable the extension in the notebook, in the shell, type:
-        
-        .. code:: bash
-        
-          ipcluster nbextension enable
-        
-        
-        3. To start up a cluster, with 10 nodes, on a local IP address, in the 
shell, type:
-        
-        .. code:: bash
-        
-          ipcluster start --n=10 --ip=192.168.1.108
-        
-        
-        4. Initialize the code to use the 10 nodes, inside the notebook from a 
host kernel ``MODULE`` and ``CLASSNAME`` (can be any metakernel kernel):
-        
-        .. code:: bash
-        
-          %parallel MODULE CLASSNAME
-        
-        
-        For example:
-        
-        .. code:: bash
-        
-          %parallel calysto_scheme CalystoScheme
-        
-        
-        5. Run code in parallel, inside the notebook, type:
-        
-        Execute a single line, in parallel:
-        
-        .. code:: bash
-        
-          %px (+ 1 1)
-        
-        
-        Or execute the entire cell, in parallel:
-        
-        .. code:: bash
-        
-          %%px
-          (* cluster_rank cluster_rank)
-        
-        
-        Results come back in a Python list (Scheme vector), in 
``cluster_rank`` order. (This will be a JSON representation in the future).
-        
-        Therefore, the above would produce the result:
-        
-        .. code:: bash
-        
-          #10(0 1 4 9 16 25 36 49 64 81)
-        
-        You can get the results back in any of the parallel magics (``%px``, 
``%%px``, or ``%pmap``) in the host kernel by accessing the variable ``_`` 
(single underscore), or by using the ``--set_variable VARIABLE`` flag, like so:
-        
-        .. code:: bash
-        
-          %%px --set_variable results
-          (* cluster_rank cluster_rank)
-        
-        
-        Then, in the next cell, you can access ``results``.
-        
-        Notice that you can use the variable ``cluster_rank`` to partition 
parts of a problem so that each node is working on something different.
-        
-        In the examples above, use ``-e`` to evaluate the code in the host 
kernel as well. Note that ``cluster_rank`` is not defined on the host machine, 
and that this assumes the host kernel is the same as the parallel machines.
-        
-        
-        Configuration
-        -------------
-        ``Metakernel`` subclasses can be configured by the user.  The
-        configuration file name is determined by the ``app_name`` property of 
the subclass.
-        For example, in the ``Octave`` kernel, it is ``octave_kernel``.  The 
user of the kernel can add an ``octave_kernel_config.py`` file to their
-        ``jupyter`` config path.  The base ``MetaKernel`` class offers 
``plot_settings`` as a configurable trait.  Subclasses can define other traits 
that they wish to make
-        configurable.
-        
-        As an example:
-        
-        .. code:: bash
-        
-            cat ~/.jupyter/octave_kernel_config.py
-            # use Qt as the default backend for plots
-            c.OctaveKernel.plot_settings = dict(backend='qt')
-        
-        
-        Documentation
-        -----------------------
-        
-        Example notebooks can be viewed here_.
-        
-        Documentation is available online_. Magics have interactive help_ (and 
online).
-        
-        For version information, see the Revision History_.
-        
-        
-        .. _here: 
http://nbviewer.ipython.org/github/Calysto/metakernel/tree/master/examples/
-        
-        .. _help: 
https://github.com/Calysto/metakernel/blob/master/metakernel/magics/README.md
-        
-        .. _online: http://Calysto.github.io/metakernel/
-        
-        .. _History: 
https://github.com/Calysto/metakernel/blob/master/HISTORY.rst
-        
-Platform: UNKNOWN
-Classifier: Framework :: IPython
-Classifier: License :: OSI Approved :: BSD License
-Classifier: Programming Language :: Python :: 3
-Classifier: Programming Language :: Python :: 2
-Classifier: Topic :: System :: Shells
-Requires: ipykernel
-Requires: pexpect (>= 4.2)
-Requires: ipyparallel
-Description-Content-Type: text/x-rst
-Provides-Extra: test
+Metadata-Version: 2.1
+Name: metakernel
+Version: 0.24.3
+Summary: Metakernel for Jupyter
+Home-page: https://github.com/Calysto/metakernel
+Author: Steven Silvester
+Author-email: [email protected]
+License: UNKNOWN
+Description: A Jupyter kernel base class in Python which includes core magic 
functions (including help, command and file path completion, parallel and 
distributed processing, downloads, and much more).
+        
+        .. image:: https://badge.fury.io/py/metakernel.png/
+            :target: http://badge.fury.io/py/metakernel
+        
+        .. image:: 
https://coveralls.io/repos/Calysto/metakernel/badge.png?branch=master
+          :target: https://coveralls.io/r/Calysto/metakernel
+        
+        .. image:: https://travis-ci.org/Calysto/metakernel.svg
+          :target: https://travis-ci.org/Calysto/metakernel
+        
+        .. image:: 
https://anaconda.org/conda-forge/metakernel/badges/version.svg
+            :target: https://anaconda.org/conda-forge/metakernel
+        
+        .. image:: 
https://anaconda.org/conda-forge/metakernel/badges/downloads.svg
+            :target: https://anaconda.org/conda-forge/metakernel
+        
+        
+        See Jupyter's docs on `wrapper kernels
+        <http://jupyter-client.readthedocs.io/en/stable/wrapperkernels.html>`_.
+        
+        Additional magics can be installed within the new kernel package under 
a `magics` subpackage.
+        
+        
+        Features
+        -------------
+        - Basic set of line and cell magics for all kernels.
+            - Python magic for accessing python interpreter.
+            - Run kernels in parallel.
+            - Shell magics.
+            - Classroom management magics.
+        - Tab completion for magics and file paths.
+        - Help for magics using ? or Shift+Tab.
+        - Plot magic for setting default plot behavior.
+        
+        Kernels based on Metakernel
+        ---------------------------
+        
+        - matlab_kernel, https://github.com/Calysto/matlab_kernel
+        - octave_kernel, https://github.com/Calysto/octave_kernel
+        - calysto_scheme, https://github.com/Calysto/calysto_scheme
+        - calysto_processing, https://github.com/Calysto/calysto_processing
+        - java9_kernel, https://github.com/Bachmann1234/java9_kernel
+        - xonsh_kernel, https://github.com/Calysto/xonsh_kernel
+        - calysto_hy, https://github.com/Calysto/calysto_hy
+        - gnuplot_kernel, https://github.com/has2k1/gnuplot_kernel
+        - spylon_kernel, https://github.com/mariusvniekerk/spylon-kernel
+        - wolfram_kernel, https://github.com/mmatera/iwolfram
+        - sas_kernel, https://github.com/palmer0914/sas_kernel
+        - pysysh_kernel, https://github.com/Jaesin/psysh_kernel
+        - calysto_bash, https://github.com/Calysto/calysto_bash
+        
+        ... and many others.
+        
+        Installation
+        ----------------
+        You can install Metakernel through ``pip``:
+        
+        .. code::bash
+        
+         pip install metakernel --upgrade
+        
+        Installing `metakernel` from the `conda-forge` channel can be achieved 
by adding `conda-forge` to your channels with:
+        
+        .. code::bash
+        
+         conda config --add channels conda-forge
+        
+        Once the `conda-forge` channel has been enabled, `metakernel` can be 
installed with:
+        
+        .. code::bash
+        
+         conda install metakernel
+        
+        It is possible to list all of the versions of `metakernel` available 
on your platform with:
+        
+        .. code::bash
+        
+         conda search metakernel --channel conda-forge
+        
+        
+        Use MetaKernel Magics in IPython
+        --------------------------------
+        
+        Although MetaKernel is a system for building new kernels, you can use 
a subset of the magics in the IPython kernel.
+        
+        .. code:: python
+        
+         from metakernel import register_ipython_magics
+         register_ipython_magics()
+        
+        Put the following in your (or a system-wide) ``ipython_config.py`` 
file:
+        
+        .. code:: python
+        
+         # /etc/ipython/ipython_config.py
+         c = get_config()
+         startup = [
+            'from metakernel import register_ipython_magics',
+            'register_ipython_magics()',
+         ]
+         c.InteractiveShellApp.exec_lines = startup
+        
+        Use MetaKernel Languages in Parallel
+        
+        To use a MetaKernel language in parallel, do the following:
+        
+        1. Make sure that the Python module `ipyparallel` is installed. In the 
shell, type:
+        
+        .. code:: bash
+        
+          pip install ipyparallel
+        
+        
+        2. To enable the extension in the notebook, in the shell, type:
+        
+        .. code:: bash
+        
+          ipcluster nbextension enable
+        
+        
+        3. To start up a cluster, with 10 nodes, on a local IP address, in the 
shell, type:
+        
+        .. code:: bash
+        
+          ipcluster start --n=10 --ip=192.168.1.108
+        
+        
+        4. Initialize the code to use the 10 nodes, inside the notebook from a 
host kernel ``MODULE`` and ``CLASSNAME`` (can be any metakernel kernel):
+        
+        .. code:: bash
+        
+          %parallel MODULE CLASSNAME
+        
+        
+        For example:
+        
+        .. code:: bash
+        
+          %parallel calysto_scheme CalystoScheme
+        
+        
+        5. Run code in parallel, inside the notebook, type:
+        
+        Execute a single line, in parallel:
+        
+        .. code:: bash
+        
+          %px (+ 1 1)
+        
+        
+        Or execute the entire cell, in parallel:
+        
+        .. code:: bash
+        
+          %%px
+          (* cluster_rank cluster_rank)
+        
+        
+        Results come back in a Python list (Scheme vector), in 
``cluster_rank`` order. (This will be a JSON representation in the future).
+        
+        Therefore, the above would produce the result:
+        
+        .. code:: bash
+        
+          #10(0 1 4 9 16 25 36 49 64 81)
+        
+        You can get the results back in any of the parallel magics (``%px``, 
``%%px``, or ``%pmap``) in the host kernel by accessing the variable ``_`` 
(single underscore), or by using the ``--set_variable VARIABLE`` flag, like so:
+        
+        .. code:: bash
+        
+          %%px --set_variable results
+          (* cluster_rank cluster_rank)
+        
+        
+        Then, in the next cell, you can access ``results``.
+        
+        Notice that you can use the variable ``cluster_rank`` to partition 
parts of a problem so that each node is working on something different.
+        
+        In the examples above, use ``-e`` to evaluate the code in the host 
kernel as well. Note that ``cluster_rank`` is not defined on the host machine, 
and that this assumes the host kernel is the same as the parallel machines.
+        
+        
+        Configuration
+        -------------
+        ``Metakernel`` subclasses can be configured by the user.  The
+        configuration file name is determined by the ``app_name`` property of 
the subclass.
+        For example, in the ``Octave`` kernel, it is ``octave_kernel``.  The 
user of the kernel can add an ``octave_kernel_config.py`` file to their
+        ``jupyter`` config path.  The base ``MetaKernel`` class offers 
``plot_settings`` as a configurable trait.  Subclasses can define other traits 
that they wish to make
+        configurable.
+        
+        As an example:
+        
+        .. code:: bash
+        
+            cat ~/.jupyter/octave_kernel_config.py
+            # use Qt as the default backend for plots
+            c.OctaveKernel.plot_settings = dict(backend='qt')
+        
+        
+        Documentation
+        -----------------------
+        
+        Example notebooks can be viewed here_.
+        
+        Documentation is available online_. Magics have interactive help_ (and 
online).
+        
+        For version information, see the Revision History_.
+        
+        
+        .. _here: 
http://nbviewer.ipython.org/github/Calysto/metakernel/tree/master/examples/
+        
+        .. _help: 
https://github.com/Calysto/metakernel/blob/master/metakernel/magics/README.md
+        
+        .. _online: http://Calysto.github.io/metakernel/
+        
+        .. _History: 
https://github.com/Calysto/metakernel/blob/master/HISTORY.rst
+        
+Platform: UNKNOWN
+Classifier: Framework :: IPython
+Classifier: License :: OSI Approved :: BSD License
+Classifier: Programming Language :: Python :: 3
+Classifier: Programming Language :: Python :: 2
+Classifier: Topic :: System :: Shells
+Requires: ipykernel
+Requires: pexpect (>= 4.2)
+Requires: ipyparallel
+Description-Content-Type: text/x-rst
+Provides-Extra: test
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/metakernel-0.24.2/metakernel/__init__.py 
new/metakernel-0.24.3/metakernel/__init__.py
--- old/metakernel-0.24.2/metakernel/__init__.py        2019-06-05 
10:59:49.000000000 +0200
+++ new/metakernel-0.24.3/metakernel/__init__.py        2019-09-14 
17:11:16.000000000 +0200
@@ -9,6 +9,6 @@
 
 __all__ = ['Magic', 'MetaKernel', 'option']
 
-__version__ = '0.24.2'
+__version__ = '0.24.3'
 
 del magic, _metakernel, parser, process_metakernel
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' 
old/metakernel-0.24.2/metakernel/magics/activity_magic.py 
new/metakernel-0.24.3/metakernel/magics/activity_magic.py
--- old/metakernel-0.24.2/metakernel/magics/activity_magic.py   2019-05-16 
03:19:17.000000000 +0200
+++ new/metakernel-0.24.3/metakernel/magics/activity_magic.py   2019-09-14 
17:10:17.000000000 +0200
@@ -162,11 +162,11 @@
                 print(barvalues)
 
     def handle_submit(self, sender):
-        import fcntl
-        with open(self.results_filename, "a+") as g:
-            fcntl.flock(g, fcntl.LOCK_EX)
+        import portalocker,os
+        with portalocker.Lock(self.results_filename, "a+") as g:
             g.write("%s::%s::%s::%s\n" % (self.id, getpass.getuser(), 
datetime.datetime.today(), sender.description))
-            fcntl.flock(g, fcntl.LOCK_UN)
+            g.flush()
+            os.fsync(g.fileno())
         self.output.clear_output()
         with self.output:
             print("Received: " + sender.description)
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/metakernel-0.24.2/metakernel.egg-info/PKG-INFO 
new/metakernel-0.24.3/metakernel.egg-info/PKG-INFO
--- old/metakernel-0.24.2/metakernel.egg-info/PKG-INFO  2019-06-05 
10:59:53.000000000 +0200
+++ new/metakernel-0.24.3/metakernel.egg-info/PKG-INFO  2019-09-14 
17:11:19.000000000 +0200
@@ -1,236 +1,236 @@
-Metadata-Version: 2.1
-Name: metakernel
-Version: 0.24.2
-Summary: Metakernel for Jupyter
-Home-page: https://github.com/Calysto/metakernel
-Author: Steven Silvester
-Author-email: [email protected]
-License: UNKNOWN
-Description: A Jupyter kernel base class in Python which includes core magic 
functions (including help, command and file path completion, parallel and 
distributed processing, downloads, and much more).
-        
-        .. image:: https://badge.fury.io/py/metakernel.png/
-            :target: http://badge.fury.io/py/metakernel
-        
-        .. image:: 
https://coveralls.io/repos/Calysto/metakernel/badge.png?branch=master
-          :target: https://coveralls.io/r/Calysto/metakernel
-        
-        .. image:: https://travis-ci.org/Calysto/metakernel.svg
-          :target: https://travis-ci.org/Calysto/metakernel
-        
-        .. image:: 
https://anaconda.org/conda-forge/metakernel/badges/version.svg
-            :target: https://anaconda.org/conda-forge/metakernel
-        
-        .. image:: 
https://anaconda.org/conda-forge/metakernel/badges/downloads.svg
-            :target: https://anaconda.org/conda-forge/metakernel
-        
-        
-        See Jupyter's docs on `wrapper kernels
-        <http://jupyter-client.readthedocs.io/en/stable/wrapperkernels.html>`_.
-        
-        Additional magics can be installed within the new kernel package under 
a `magics` subpackage.
-        
-        
-        Features
-        -------------
-        - Basic set of line and cell magics for all kernels.
-            - Python magic for accessing python interpreter.
-            - Run kernels in parallel.
-            - Shell magics.
-            - Classroom management magics.
-        - Tab completion for magics and file paths.
-        - Help for magics using ? or Shift+Tab.
-        - Plot magic for setting default plot behavior.
-        
-        Kernels based on Metakernel
-        ---------------------------
-        
-        - matlab_kernel, https://github.com/Calysto/matlab_kernel
-        - octave_kernel, https://github.com/Calysto/octave_kernel
-        - calysto_scheme, https://github.com/Calysto/calysto_scheme
-        - calysto_processing, https://github.com/Calysto/calysto_processing
-        - java9_kernel, https://github.com/Bachmann1234/java9_kernel
-        - xonsh_kernel, https://github.com/Calysto/xonsh_kernel
-        - calysto_hy, https://github.com/Calysto/calysto_hy
-        - gnuplot_kernel, https://github.com/has2k1/gnuplot_kernel
-        - spylon_kernel, https://github.com/mariusvniekerk/spylon-kernel
-        - wolfram_kernel, https://github.com/mmatera/iwolfram
-        - sas_kernel, https://github.com/palmer0914/sas_kernel
-        - pysysh_kernel, https://github.com/Jaesin/psysh_kernel
-        - calysto_bash, https://github.com/Calysto/calysto_bash
-        
-        ... and many others.
-        
-        Installation
-        ----------------
-        You can install Metakernel through ``pip``:
-        
-        .. code::bash
-        
-         pip install metakernel --upgrade
-        
-        Installing `metakernel` from the `conda-forge` channel can be achieved 
by adding `conda-forge` to your channels with:
-        
-        .. code::bash
-        
-         conda config --add channels conda-forge
-        
-        Once the `conda-forge` channel has been enabled, `metakernel` can be 
installed with:
-        
-        .. code::bash
-        
-         conda install metakernel
-        
-        It is possible to list all of the versions of `metakernel` available 
on your platform with:
-        
-        .. code::bash
-        
-         conda search metakernel --channel conda-forge
-        
-        
-        Use MetaKernel Magics in IPython
-        --------------------------------
-        
-        Although MetaKernel is a system for building new kernels, you can use 
a subset of the magics in the IPython kernel.
-        
-        .. code:: python
-        
-         from metakernel import register_ipython_magics
-         register_ipython_magics()
-        
-        Put the following in your (or a system-wide) ``ipython_config.py`` 
file:
-        
-        .. code:: python
-        
-         # /etc/ipython/ipython_config.py
-         c = get_config()
-         startup = [
-            'from metakernel import register_ipython_magics',
-            'register_ipython_magics()',
-         ]
-         c.InteractiveShellApp.exec_lines = startup
-        
-        Use MetaKernel Languages in Parallel
-        
-        To use a MetaKernel language in parallel, do the following:
-        
-        1. Make sure that the Python module `ipyparallel` is installed. In the 
shell, type:
-        
-        .. code:: bash
-        
-          pip install ipyparallel
-        
-        
-        2. To enable the extension in the notebook, in the shell, type:
-        
-        .. code:: bash
-        
-          ipcluster nbextension enable
-        
-        
-        3. To start up a cluster, with 10 nodes, on a local IP address, in the 
shell, type:
-        
-        .. code:: bash
-        
-          ipcluster start --n=10 --ip=192.168.1.108
-        
-        
-        4. Initialize the code to use the 10 nodes, inside the notebook from a 
host kernel ``MODULE`` and ``CLASSNAME`` (can be any metakernel kernel):
-        
-        .. code:: bash
-        
-          %parallel MODULE CLASSNAME
-        
-        
-        For example:
-        
-        .. code:: bash
-        
-          %parallel calysto_scheme CalystoScheme
-        
-        
-        5. Run code in parallel, inside the notebook, type:
-        
-        Execute a single line, in parallel:
-        
-        .. code:: bash
-        
-          %px (+ 1 1)
-        
-        
-        Or execute the entire cell, in parallel:
-        
-        .. code:: bash
-        
-          %%px
-          (* cluster_rank cluster_rank)
-        
-        
-        Results come back in a Python list (Scheme vector), in 
``cluster_rank`` order. (This will be a JSON representation in the future).
-        
-        Therefore, the above would produce the result:
-        
-        .. code:: bash
-        
-          #10(0 1 4 9 16 25 36 49 64 81)
-        
-        You can get the results back in any of the parallel magics (``%px``, 
``%%px``, or ``%pmap``) in the host kernel by accessing the variable ``_`` 
(single underscore), or by using the ``--set_variable VARIABLE`` flag, like so:
-        
-        .. code:: bash
-        
-          %%px --set_variable results
-          (* cluster_rank cluster_rank)
-        
-        
-        Then, in the next cell, you can access ``results``.
-        
-        Notice that you can use the variable ``cluster_rank`` to partition 
parts of a problem so that each node is working on something different.
-        
-        In the examples above, use ``-e`` to evaluate the code in the host 
kernel as well. Note that ``cluster_rank`` is not defined on the host machine, 
and that this assumes the host kernel is the same as the parallel machines.
-        
-        
-        Configuration
-        -------------
-        ``Metakernel`` subclasses can be configured by the user.  The
-        configuration file name is determined by the ``app_name`` property of 
the subclass.
-        For example, in the ``Octave`` kernel, it is ``octave_kernel``.  The 
user of the kernel can add an ``octave_kernel_config.py`` file to their
-        ``jupyter`` config path.  The base ``MetaKernel`` class offers 
``plot_settings`` as a configurable trait.  Subclasses can define other traits 
that they wish to make
-        configurable.
-        
-        As an example:
-        
-        .. code:: bash
-        
-            cat ~/.jupyter/octave_kernel_config.py
-            # use Qt as the default backend for plots
-            c.OctaveKernel.plot_settings = dict(backend='qt')
-        
-        
-        Documentation
-        -----------------------
-        
-        Example notebooks can be viewed here_.
-        
-        Documentation is available online_. Magics have interactive help_ (and 
online).
-        
-        For version information, see the Revision History_.
-        
-        
-        .. _here: 
http://nbviewer.ipython.org/github/Calysto/metakernel/tree/master/examples/
-        
-        .. _help: 
https://github.com/Calysto/metakernel/blob/master/metakernel/magics/README.md
-        
-        .. _online: http://Calysto.github.io/metakernel/
-        
-        .. _History: 
https://github.com/Calysto/metakernel/blob/master/HISTORY.rst
-        
-Platform: UNKNOWN
-Classifier: Framework :: IPython
-Classifier: License :: OSI Approved :: BSD License
-Classifier: Programming Language :: Python :: 3
-Classifier: Programming Language :: Python :: 2
-Classifier: Topic :: System :: Shells
-Requires: ipykernel
-Requires: pexpect (>= 4.2)
-Requires: ipyparallel
-Description-Content-Type: text/x-rst
-Provides-Extra: test
+Metadata-Version: 2.1
+Name: metakernel
+Version: 0.24.3
+Summary: Metakernel for Jupyter
+Home-page: https://github.com/Calysto/metakernel
+Author: Steven Silvester
+Author-email: [email protected]
+License: UNKNOWN
+Description: A Jupyter kernel base class in Python which includes core magic 
functions (including help, command and file path completion, parallel and 
distributed processing, downloads, and much more).
+        
+        .. image:: https://badge.fury.io/py/metakernel.png/
+            :target: http://badge.fury.io/py/metakernel
+        
+        .. image:: 
https://coveralls.io/repos/Calysto/metakernel/badge.png?branch=master
+          :target: https://coveralls.io/r/Calysto/metakernel
+        
+        .. image:: https://travis-ci.org/Calysto/metakernel.svg
+          :target: https://travis-ci.org/Calysto/metakernel
+        
+        .. image:: 
https://anaconda.org/conda-forge/metakernel/badges/version.svg
+            :target: https://anaconda.org/conda-forge/metakernel
+        
+        .. image:: 
https://anaconda.org/conda-forge/metakernel/badges/downloads.svg
+            :target: https://anaconda.org/conda-forge/metakernel
+        
+        
+        See Jupyter's docs on `wrapper kernels
+        <http://jupyter-client.readthedocs.io/en/stable/wrapperkernels.html>`_.
+        
+        Additional magics can be installed within the new kernel package under 
a `magics` subpackage.
+        
+        
+        Features
+        -------------
+        - Basic set of line and cell magics for all kernels.
+            - Python magic for accessing python interpreter.
+            - Run kernels in parallel.
+            - Shell magics.
+            - Classroom management magics.
+        - Tab completion for magics and file paths.
+        - Help for magics using ? or Shift+Tab.
+        - Plot magic for setting default plot behavior.
+        
+        Kernels based on Metakernel
+        ---------------------------
+        
+        - matlab_kernel, https://github.com/Calysto/matlab_kernel
+        - octave_kernel, https://github.com/Calysto/octave_kernel
+        - calysto_scheme, https://github.com/Calysto/calysto_scheme
+        - calysto_processing, https://github.com/Calysto/calysto_processing
+        - java9_kernel, https://github.com/Bachmann1234/java9_kernel
+        - xonsh_kernel, https://github.com/Calysto/xonsh_kernel
+        - calysto_hy, https://github.com/Calysto/calysto_hy
+        - gnuplot_kernel, https://github.com/has2k1/gnuplot_kernel
+        - spylon_kernel, https://github.com/mariusvniekerk/spylon-kernel
+        - wolfram_kernel, https://github.com/mmatera/iwolfram
+        - sas_kernel, https://github.com/palmer0914/sas_kernel
+        - pysysh_kernel, https://github.com/Jaesin/psysh_kernel
+        - calysto_bash, https://github.com/Calysto/calysto_bash
+        
+        ... and many others.
+        
+        Installation
+        ----------------
+        You can install Metakernel through ``pip``:
+        
+        .. code::bash
+        
+         pip install metakernel --upgrade
+        
+        Installing `metakernel` from the `conda-forge` channel can be achieved 
by adding `conda-forge` to your channels with:
+        
+        .. code::bash
+        
+         conda config --add channels conda-forge
+        
+        Once the `conda-forge` channel has been enabled, `metakernel` can be 
installed with:
+        
+        .. code::bash
+        
+         conda install metakernel
+        
+        It is possible to list all of the versions of `metakernel` available 
on your platform with:
+        
+        .. code::bash
+        
+         conda search metakernel --channel conda-forge
+        
+        
+        Use MetaKernel Magics in IPython
+        --------------------------------
+        
+        Although MetaKernel is a system for building new kernels, you can use 
a subset of the magics in the IPython kernel.
+        
+        .. code:: python
+        
+         from metakernel import register_ipython_magics
+         register_ipython_magics()
+        
+        Put the following in your (or a system-wide) ``ipython_config.py`` 
file:
+        
+        .. code:: python
+        
+         # /etc/ipython/ipython_config.py
+         c = get_config()
+         startup = [
+            'from metakernel import register_ipython_magics',
+            'register_ipython_magics()',
+         ]
+         c.InteractiveShellApp.exec_lines = startup
+        
+        Use MetaKernel Languages in Parallel
+        
+        To use a MetaKernel language in parallel, do the following:
+        
+        1. Make sure that the Python module `ipyparallel` is installed. In the 
shell, type:
+        
+        .. code:: bash
+        
+          pip install ipyparallel
+        
+        
+        2. To enable the extension in the notebook, in the shell, type:
+        
+        .. code:: bash
+        
+          ipcluster nbextension enable
+        
+        
+        3. To start up a cluster, with 10 nodes, on a local IP address, in the 
shell, type:
+        
+        .. code:: bash
+        
+          ipcluster start --n=10 --ip=192.168.1.108
+        
+        
+        4. Initialize the code to use the 10 nodes, inside the notebook from a 
host kernel ``MODULE`` and ``CLASSNAME`` (can be any metakernel kernel):
+        
+        .. code:: bash
+        
+          %parallel MODULE CLASSNAME
+        
+        
+        For example:
+        
+        .. code:: bash
+        
+          %parallel calysto_scheme CalystoScheme
+        
+        
+        5. Run code in parallel, inside the notebook, type:
+        
+        Execute a single line, in parallel:
+        
+        .. code:: bash
+        
+          %px (+ 1 1)
+        
+        
+        Or execute the entire cell, in parallel:
+        
+        .. code:: bash
+        
+          %%px
+          (* cluster_rank cluster_rank)
+        
+        
+        Results come back in a Python list (Scheme vector), in 
``cluster_rank`` order. (This will be a JSON representation in the future).
+        
+        Therefore, the above would produce the result:
+        
+        .. code:: bash
+        
+          #10(0 1 4 9 16 25 36 49 64 81)
+        
+        You can get the results back in any of the parallel magics (``%px``, 
``%%px``, or ``%pmap``) in the host kernel by accessing the variable ``_`` 
(single underscore), or by using the ``--set_variable VARIABLE`` flag, like so:
+        
+        .. code:: bash
+        
+          %%px --set_variable results
+          (* cluster_rank cluster_rank)
+        
+        
+        Then, in the next cell, you can access ``results``.
+        
+        Notice that you can use the variable ``cluster_rank`` to partition 
parts of a problem so that each node is working on something different.
+        
+        In the examples above, use ``-e`` to evaluate the code in the host 
kernel as well. Note that ``cluster_rank`` is not defined on the host machine, 
and that this assumes the host kernel is the same as the parallel machines.
+        
+        
+        Configuration
+        -------------
+        ``Metakernel`` subclasses can be configured by the user.  The
+        configuration file name is determined by the ``app_name`` property of 
the subclass.
+        For example, in the ``Octave`` kernel, it is ``octave_kernel``.  The 
user of the kernel can add an ``octave_kernel_config.py`` file to their
+        ``jupyter`` config path.  The base ``MetaKernel`` class offers 
``plot_settings`` as a configurable trait.  Subclasses can define other traits 
that they wish to make
+        configurable.
+        
+        As an example:
+        
+        .. code:: bash
+        
+            cat ~/.jupyter/octave_kernel_config.py
+            # use Qt as the default backend for plots
+            c.OctaveKernel.plot_settings = dict(backend='qt')
+        
+        
+        Documentation
+        -----------------------
+        
+        Example notebooks can be viewed here_.
+        
+        Documentation is available online_. Magics have interactive help_ (and 
online).
+        
+        For version information, see the Revision History_.
+        
+        
+        .. _here: 
http://nbviewer.ipython.org/github/Calysto/metakernel/tree/master/examples/
+        
+        .. _help: 
https://github.com/Calysto/metakernel/blob/master/metakernel/magics/README.md
+        
+        .. _online: http://Calysto.github.io/metakernel/
+        
+        .. _History: 
https://github.com/Calysto/metakernel/blob/master/HISTORY.rst
+        
+Platform: UNKNOWN
+Classifier: Framework :: IPython
+Classifier: License :: OSI Approved :: BSD License
+Classifier: Programming Language :: Python :: 3
+Classifier: Programming Language :: Python :: 2
+Classifier: Topic :: System :: Shells
+Requires: ipykernel
+Requires: pexpect (>= 4.2)
+Requires: ipyparallel
+Description-Content-Type: text/x-rst
+Provides-Extra: test
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/metakernel-0.24.2/metakernel.egg-info/SOURCES.txt 
new/metakernel-0.24.3/metakernel.egg-info/SOURCES.txt
--- old/metakernel-0.24.2/metakernel.egg-info/SOURCES.txt       2019-06-05 
10:59:54.000000000 +0200
+++ new/metakernel-0.24.3/metakernel.egg-info/SOURCES.txt       2019-09-14 
17:11:19.000000000 +0200
@@ -108,7 +108,6 @@
 metakernel_echo/README.md
 metakernel_echo/metakernel_echo.py
 metakernel_echo/setup.py
-metakernel_echo/__pycache__/metakernel_echo.cpython-37.pyc
 metakernel_python/README.md
 metakernel_python/metakernel_python.py
 metakernel_python/setup.py
\ No newline at end of file
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/metakernel-0.24.2/metakernel.egg-info/requires.txt 
new/metakernel-0.24.3/metakernel.egg-info/requires.txt
--- old/metakernel-0.24.2/metakernel.egg-info/requires.txt      2019-06-05 
10:59:53.000000000 +0200
+++ new/metakernel-0.24.3/metakernel.egg-info/requires.txt      2019-09-14 
17:11:19.000000000 +0200
@@ -1,6 +1,7 @@
 ipykernel
 pexpect>=4.2
 ipyparallel
+portalocker
 
 [test]
 pytest
Binary files 
old/metakernel-0.24.2/metakernel_echo/__pycache__/metakernel_echo.cpython-37.pyc
 and 
new/metakernel-0.24.3/metakernel_echo/__pycache__/metakernel_echo.cpython-37.pyc
 differ
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/metakernel-0.24.2/setup.cfg 
new/metakernel-0.24.3/setup.cfg
--- old/metakernel-0.24.2/setup.cfg     2019-06-05 10:59:55.000000000 +0200
+++ new/metakernel-0.24.3/setup.cfg     2019-09-14 17:11:19.000000000 +0200
@@ -1,22 +1,22 @@
-[build_sphinx]
-source-dir = docs
-build-dir = docs/build
-all_files = 1
-
-[upload_sphinx]
-upload-dir = docs/build/html
-
-[wheel]
-universal = 1
-
-[metadata]
-license_file = LICENSE.txt
-
-[tool:pytest]
-addopts = --doctest-modules
-norecursedirs = images metakernel_python
-
-[egg_info]
-tag_build = 
-tag_date = 0
-
+[build_sphinx]
+source-dir = docs
+build-dir = docs/build
+all_files = 1
+
+[upload_sphinx]
+upload-dir = docs/build/html
+
+[wheel]
+universal = 1
+
+[metadata]
+license_file = LICENSE.txt
+
+[tool:pytest]
+addopts = --doctest-modules
+norecursedirs = images metakernel_python
+
+[egg_info]
+tag_build = 
+tag_date = 0
+
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/metakernel-0.24.2/setup.py 
new/metakernel-0.24.3/setup.py
--- old/metakernel-0.24.2/setup.py      2019-06-04 00:00:39.000000000 +0200
+++ new/metakernel-0.24.3/setup.py      2019-09-14 17:10:17.000000000 +0200
@@ -27,7 +27,7 @@
       author_email='[email protected]',
       url='https://github.com/Calysto/metakernel',
       requires=[ipykernel_requires, 'pexpect (>= 4.2)', 'ipyparallel'],
-      install_requires=[ipykernel_install_requires, 'pexpect>=4.2', 
'ipyparallel'],
+      install_requires=[ipykernel_install_requires, 'pexpect>=4.2', 
'ipyparallel','portalocker'],
       extras_require={
           'test': ['pytest', 'pytest-cov', 'requests']
       },


Reply via email to