Hello community,

here is the log from the commit of package python-scikit-learn for 
openSUSE:Leap:15.2 checked in at 2020-03-09 18:11:17
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Comparing /work/SRC/openSUSE:Leap:15.2/python-scikit-learn (Old)
 and      /work/SRC/openSUSE:Leap:15.2/.python-scikit-learn.new.26092 (New)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Package is "python-scikit-learn"

Mon Mar  9 18:11:17 2020 rev:12 rq:777117 version:0.22.1

Changes:
--------
--- 
/work/SRC/openSUSE:Leap:15.2/python-scikit-learn/python-scikit-learn.changes    
    2020-01-15 15:52:50.747577353 +0100
+++ 
/work/SRC/openSUSE:Leap:15.2/.python-scikit-learn.new.26092/python-scikit-learn.changes
     2020-03-09 18:11:19.741193411 +0100
@@ -1,0 +2,609 @@
+Tue Jan  7 10:53:55 UTC 2020 - [email protected]
+
+- version update to 0.22.1
+  * Clear definition of the public API
+  * Deprecations: using FutureWarning from now on
+  * Certain estimators and functions may produce different models
+  * See
+  https://scikit-learn.org/stable/whats_new/v0.22.html#version-0-22-0
+
+-------------------------------------------------------------------
+Tue Nov 19 20:10:24 UTC 2019 - Todd R <[email protected]>
+
+- Update to Version 0.21.3
+  + sklearn.cluster
+    * Fix: Fixed a bug in :class:`cluster.KMeans` where computation with
+      `init='random'` was single threaded for `n_jobs > 1` or `n_jobs = -1`.
+    * Fix: Fixed a bug in :class:`cluster.OPTICS` where users were unable to 
pass
+      float `min_samples` and `min_cluster_size`.
+    * Fix: Fixed a bug in :class:`cluster.KMeans` where KMeans++ initialisation
+      could rarely result in an IndexError..
+  + sklearn.compose
+    * Fix: Fixed an issue in :class:`compose.ColumnTransformer` where using
+      DataFrames whose column order differs between :func:``fit`` and
+      :func:``transform`` could lead to silently passing incorrect columns to 
the
+      ``remainder`` transformer.
+  + sklearn.datasets
+    * Fix: :func:`datasets.fetch_california_housing`,
+      :func:`datasets.fetch_covtype`,
+      :func:`datasets.fetch_kddcup99`, :func:`datasets.fetch_olivetti_faces`,
+      :func:`datasets.fetch_rcv1`, and 
:func:`datasets.fetch_species_distributions`
+      try to persist the previously cache using the new ``joblib`` if the 
cached
+      data was persisted using the deprecated ``sklearn.externals.joblib``. 
This
+      behavior is set to be deprecated and removed in v0.23.
+.
+  + sklearn.ensemble
+    * Fix: Fix zero division error in :func:`HistGradientBoostingClassifier` 
and
+      :func:`HistGradientBoostingRegressor`.
+  + sklearn.impute
+    * Fix: Fixed a bug in :class:`impute.SimpleImputer` and
+      :class:`impute.IterativeImputer` so that no errors are thrown when there 
are
+      missing values in training data.
+  + sklearn.inspection
+    * Fix: Fixed a bug in :func:`inspection.plot_partial_dependence` where 
+      ``target`` parameter was not being taken into account for multiclass 
problems.
+      :pr:`14393` by :user:`Guillem G. Subies <guillemgsubies>`.
+  + sklearn.linear_model
+    * Fix: Fixed a bug in :class:`linear_model.LogisticRegressionCV` where
+      ``refit=False`` would fail depending on the ``'multiclass'`` and
+      ``'penalty'`` parameters (regression introduced in 0.21).
+    * Fix: Compatibility fix for :class:`linear_model.ARDRegression` and
+      Scipy>=1.3.0. Adapts to upstream changes to the default `pinvh` cutoff
+      threshold which otherwise results in poor accuracy in some cases.
+  + sklearn.neighbors
+    * Fix: Fixed a bug in :class:`neighbors.NeighborhoodComponentsAnalysis` 
where
+      the validation of initial parameters ``n_components``, ``max_iter`` and
+      ``tol`` required too strict types.
+  + sklearn.tree
+    * Fix: Fixed bug in :func:`tree.export_text` when the tree has one feature 
and 
+      a single feature name is passed in.
+    * Fix: Fixed an issue with :func:`plot_tree` where it displayed
+      entropy calculations even for `gini` criterion in 
DecisionTreeClassifiers.
+
+-------------------------------------------------------------------
+Fri Jul 26 16:08:07 UTC 2019 - Todd R <[email protected]>
+
+- Update to Version 0.21.2
+  + sklearn.decomposition
+    * Fix:  Fixed a bug in cross_decomposition.CCA improving numerical
+      stability when Y is close to zero..
+  + sklearn.metrics
+    * Fix:  Fixed a bug in metrics.euclidean_distances where a part of the
+      distance matrix was left un-instanciated for suffiently large float32
+      datasets (regression introduced in 0.21)..
+  + sklearn.preprocessing
+    * Fix:  Fixed a bug in preprocessing.OneHotEncoder where the new
+      drop parameter was not reflected in get_feature_names..
+  + sklearn.utils.sparsefuncs
+    * Fix:  Fixed a bug where min_max_axis would fail on 32-bit systems
+      for certain large inputs. This affects preprocessing.MaxAbsScaler,
+      preprocessing.normalize and preprocessing.LabelBinarizer..
+- Update to Version 0.21.1
+  + sklearn.metrics
+    * Fix:  Fixed a bug in metrics.pairwise_distances where it would raise
+      AttributeError for boolean metrics when X had a boolean dtype and
+      Y == None..
+    * Fix:  Fixed two bugs in metrics.pairwise_distances when
+      n_jobs > 1. First it used to return a distance matrix with same dtype as
+      input, even for integer dtype. Then the diagonal was not zeros for 
euclidean
+      metric when Y is X..
+  + sklearn.neighbors
+    * Fix:  Fixed a bug in neighbors.KernelDensity which could not be
+      restored from a pickle if sample_weight had been used..
+- Update to Version 0.21.0
+  + Changed models
+    The following estimators and functions, when fit with the same data and
+    parameters, may produce different models from the previous version. This 
often
+    occurs due to changes in the modelling logic (bug fixes or enhancements), 
or in
+    random sampling procedures.
+    * discriminant_analysis.LinearDiscriminantAnalysis for multiclass
+      classification. |Fix|
+    * discriminant_analysis.LinearDiscriminantAnalysis with 'eigen'
+      solver. |Fix|
+    * linear_model.BayesianRidge |Fix|
+    * Decision trees and derived ensembles when both max_depth and
+      max_leaf_nodes are set. |Fix|
+    * linear_model.LogisticRegression and
+      linear_model.LogisticRegressionCV with 'saga' solver. |Fix|
+    * ensemble.GradientBoostingClassifier |Fix|
+    * sklearn.feature_extraction.text.HashingVectorizer,
+      sklearn.feature_extraction.text.TfidfVectorizer, and
+      sklearn.feature_extraction.text.CountVectorizer |Fix|
+    * neural_network.MLPClassifier |Fix|
+    * svm.SVC.decision_function and
+      multiclass.OneVsOneClassifier.decision_function. |Fix|
+    * linear_model.SGDClassifier and any derived classifiers. |Fix|
+    * Any model using the linear_model.sag.sag_solver function with a 0
+      seed, including linear_model.LogisticRegression,
+      linear_model.LogisticRegressionCV, linear_model.Ridge,
+      and linear_model.RidgeCV with 'sag' solver. |Fix|
+    * linear_model.RidgeCV when using generalized cross-validation
+      with sparse inputs. |Fix|
+    Details are listed in the changelog below.
+    (While we are trying to better inform users by providing this information, 
we
+    cannot assure that this list is complete.)
+  + Known Major Bugs
+    * The default max_iter for linear_model.LogisticRegression is too
+      small for many solvers given the default tol. In particular, we
+      accidentally changed the default max_iter for the liblinear solver from
+      1000 to 100 iterations in released in version 0.16.
+      In a future release we hope to choose better default max_iter and tol
+      heuristically depending on the solver.
+  + Support for Python 3.4 and below has been officially dropped.
+  + sklearn.base
+    * API:  The R2 score used when calling score on a regressor will use
+      multioutput='uniform_average' from version 0.23 to keep consistent with
+      metrics.r2_score. This will influence the score method of all
+      the multioutput regressors (except for
+      multioutput.MultiOutputRegressor)..
+  + sklearn.calibration
+    * Enhancement:  Added support to bin the data passed into
+      calibration.calibration_curve by quantiles instead of uniformly
+      between 0 and 1..
+    * Enhancement:  Allow n-dimensional arrays as input for
+      calibration.CalibratedClassifierCV..
+  + sklearn.cluster
+    * MajorFeature:  A new clustering algorithm: cluster.OPTICS: an
+      algoritm related to cluster.DBSCAN, that has hyperparameters easier
+      to set and that scales better,
+    * Fix:  Fixed a bug where cluster.Birch could occasionally raise an
+      AttributeError..
+    * Fix:  Fixed a bug in cluster.KMeans where empty clusters weren't
+      correctly relocated when using sample weights..
+    * API:  The n_components_ attribute in cluster.AgglomerativeClustering
+      and cluster.FeatureAgglomeration has been renamed to
+      n_connected_components_..
+    * Enhancement:  cluster.AgglomerativeClustering and
+      cluster.FeatureAgglomeration now accept a distance_threshold
+      parameter which can be used to find the clusters instead of n_clusters.
+  + sklearn.compose
+    * API:  compose.ColumnTransformer is no longer an experimental
+      feature..
+  + sklearn.datasets
+    * Fix:  Added support for 64-bit group IDs and pointers in SVMLight files..
+    * Fix:  datasets.load_sample_images returns images with a deterministic
+      order..
+  + sklearn.decomposition
+    * Enhancement:  decomposition.KernelPCA now has deterministic output
+      (resolved sign ambiguity in eigenvalue decomposition of the kernel 
matrix)..
+    * Fix:  Fixed a bug in decomposition.KernelPCA, fit().transform()
+      now produces the correct output (the same as fit_transform()) in case
+      of non-removed zero eigenvalues (remove_zero_eig=False).
+      fit_inverse_transform was also accelerated by using the same trick as
+      fit_transform to compute the transform of X.
+    * Fix:  Fixed a bug in decomposition.NMF where init = 'nndsvd',
+      init = 'nndsvda', and init = 'nndsvdar' are allowed when
+      n_components < n_features instead of
+      n_components <= min(n_samples, n_features).
+    * API:  The default value of the init argument in
+      decomposition.non_negative_factorization will change from
+      random to None in version 0.23 to make it consistent with
+      decomposition.NMF. A FutureWarning is raised when
+      the default value is used..
+  + sklearn.discriminant_analysis
+    * Enhancement:  discriminant_analysis.LinearDiscriminantAnalysis now
+      preserves float32 and float64 dtypes.
+    * Fix:  A ChangedBehaviourWarning is now raised when
+      discriminant_analysis.LinearDiscriminantAnalysis is given as
+      parameter n_components > min(n_features, n_classes - 1), and
+      n_components is changed to min(n_features, n_classes - 1) if so.
+      Previously the change was made, but silently..
+    * Fix:  Fixed a bug in discriminant_analysis.LinearDiscriminantAnalysis
+      where the predicted probabilities would be incorrectly computed in the
+      multiclass case.
+    * Fix:  Fixed a bug in discriminant_analysis.LinearDiscriminantAnalysis
+      where the predicted probabilities would be incorrectly computed with 
eigen
+      solver.
+  + sklearn.dummy
++++ 412 more lines (skipped)
++++ between 
/work/SRC/openSUSE:Leap:15.2/python-scikit-learn/python-scikit-learn.changes
++++ and 
/work/SRC/openSUSE:Leap:15.2/.python-scikit-learn.new.26092/python-scikit-learn.changes

Old:
----
  scikit-learn-0.20.2.tar.gz

New:
----
  scikit-learn-0.22.1.tar.gz

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Other differences:
------------------
++++++ python-scikit-learn.spec ++++++
--- /var/tmp/diff_new_pack.GZ4DIQ/_old  2020-03-09 18:11:21.257195584 +0100
+++ /var/tmp/diff_new_pack.GZ4DIQ/_new  2020-03-09 18:11:21.305195653 +0100
@@ -1,7 +1,7 @@
 #
 # spec file for package python-scikit-learn
 #
-# Copyright (c) 2019 SUSE LINUX GmbH, Nuernberg, Germany.
+# Copyright (c) 2020 SUSE LLC
 #
 # All modifications and additions to the file contributed by third parties
 # remain the property of their copyright owners, unless otherwise agreed
@@ -17,46 +17,36 @@
 
 
 %{?!python_module:%define python_module() python-%{**} python3-%{**}}
-%define oldpython python
-# test suite just doesn't work and upstream doesn't look like fixing it
-# anytime soon, gh#scikit-learn/scikit-learn#12369
-# %%ifarch %%{ix86} x86_64
-# %%bcond_without test
-# %%else
-%bcond_with test
-# %%endif
+%define         skip_python2 1
 Name:           python-scikit-learn
-Version:        0.20.2
+Version:        0.22.1
 Release:        0
 Summary:        Python modules for machine learning and data mining
 License:        BSD-3-Clause
-Group:          Development/Libraries/Python
-URL:            http://scikit-learn.org/
+URL:            https://scikit-learn.org/
 Source0:        
https://files.pythonhosted.org/packages/source/s/scikit-learn/scikit-learn-%{version}.tar.gz
+BuildRequires:  %{python_module Cython}
 BuildRequires:  %{python_module devel}
-BuildRequires:  %{python_module matplotlib}
 BuildRequires:  %{python_module numpy-devel >= 1.8.2}
-BuildRequires:  %{python_module pytest}
 BuildRequires:  %{python_module scipy >= 0.13.3}
 BuildRequires:  %{python_module setuptools}
-BuildRequires:  %{python_module xml}
 BuildRequires:  fdupes
 BuildRequires:  gcc-c++
 BuildRequires:  gcc-fortran
 BuildRequires:  openblas-devel
 BuildRequires:  python-rpm-macros
+Requires:       python-joblib
 Requires:       python-matplotlib
 Requires:       python-numpy >= 1.8.2
 Requires:       python-scipy >= 0.13.3
 Requires:       python-xml
-%if %{with test}
-BuildRequires:  %{python_module Cython}
+# SECTION test requirements
+BuildRequires:  %{python_module joblib}
+BuildRequires:  %{python_module matplotlib}
 BuildRequires:  %{python_module nose}
-%endif
-%ifpython2
-Provides:       %{oldpython}-scikits-learn = %{version}
-Obsoletes:      %{oldpython}-scikits-learn < %{version}
-%endif
+BuildRequires:  %{python_module pytest}
+BuildRequires:  %{python_module xml}
+# /SECTION
 %python_subpackages
 
 %description
@@ -65,6 +55,7 @@
 
 %prep
 %setup -q -n scikit-learn-%{version}
+rm -rf sklearn/.pytest_cache
 
 %build
 %python_build
@@ -73,16 +64,23 @@
 %python_install
 %python_expand %fdupes %{buildroot}%{$python_sitearch}
 
-%if %{with test}
+# Precision-related errors on non-x86 platforms
+%ifarch %{ix86} x86_64
 %check
 export SKLEARN_SKIP_NETWORK_TESTS=1
+# export PYTHONDONTWRITEBYTECODE=1
 NO_TESTS="test_feature_importance_regression or 
test_minibatch_with_many_reassignments"
 NO_TESTS="$NO_TESTS or test_sparse_coder_parallel_mmap or 
test_explained_variances"
+# test_negative_sample_weights_mask_all_samples[weights-are-zero-NuSVC] Fatal 
Python error: Aborted
+NO_TESTS="$NO_TESTS or test_negative_sample_weights_mask_all_samples"
 export NO_TESTS
+mv sklearn sklearn_temp
+rm -rf build _build.*
 %{python_expand export PYTHONPATH=%{buildroot}%{$python_sitearch}
-# rm -v ensemble/tests/test_gradient_boosting.py tests/test_init.py
-py.test-%{$python_bin_suffix} -v -k "not ($NO_TESTS)" sklearn
+rm -rf build _build.*
+py.test-%{$python_bin_suffix} -p no:cacheprovider -v -k "not ($NO_TESTS)" 
%{buildroot}%{$python_sitearch}/sklearn
 }
+mv sklearn_temp sklearn
 %endif
 
 %files %{python_files}

++++++ scikit-learn-0.20.2.tar.gz -> scikit-learn-0.22.1.tar.gz ++++++
/work/SRC/openSUSE:Leap:15.2/python-scikit-learn/scikit-learn-0.20.2.tar.gz 
/work/SRC/openSUSE:Leap:15.2/.python-scikit-learn.new.26092/scikit-learn-0.22.1.tar.gz
 differ: char 5, line 1


Reply via email to