Attached is the C code from the paper linked below.
Before I try, should I attempt to make this in Pd as an abstraction or
just take this c code and see if I can turn it into an external?
Or maybe someone has already done it?
On 2017년 07월 27일 09:17, katja wrote:
Hi Max,
To emulate 3D orientation from gyro, accelerometer and compass data is
most efficiently done using a 'quaternion filter'. Sebastian Madgwick
has popularized the method, see
http://x-io.co.uk/open-source-imu-and-ahrs-algorithms/. I use
Madgwicks implementation of Mahoney's method, for Arduino based
'electronic hands', and found that Mahoney's algorithm for IMU sensors
(gyro and accelerometer only) worked much better than Madgwick's own
algorithm. But I had to make a few modifications, based on Kris
Winer's work (https://github.com/kriswiner).
Katja
On Tue, Jul 25, 2017 at 11:13 PM, Max <[email protected]> wrote:
Made a quick little video
https://vimeo.com/226958567
the described issue is still there.
Background on the problem:
https://stackoverflow.com/questions/27106607/get-rotation-and-display-in-degrees
https://stackoverflow.com/questions/15315129/convert-magnetic-field-x-y-z-values-from-device-into-global-reference-frame#15317814
On 2017년 07월 08일 23:16, Max wrote:
I've played around with the Android app Sensors2OSC [1] and was trying to
just map the senors to a virtual model of a phone.
I was able to get the axis individually mostly behaving correctly, but as
soon as the phone moves around in more than one way, it is doing weird
things. I started to wonder if it is only my phone though.
At https://github.com/mxa/GemVR the patch ReceiveSensors2OSC.pd has
everything ready to map the senor data to the Gem model.
I'd be curious to see if it is possible to let it behave correctly.
[1] https://sensors2.org/osc/
_______________________________________________
[email protected] mailing list
UNSUBSCRIBE and account-management ->
https://lists.puredata.info/listinfo/pd-list
_______________________________________________
[email protected] mailing list
UNSUBSCRIBE and account-management ->
https://lists.puredata.info/listinfo/pd-list
// MARG (Magnetic, Angular Rate, and Gravity) sensor array to determine absolute orientation of device
// Taken from the appendix of the document found at http://x-io.co.uk/res/doc/madgwick_internal_report.pdf
// Math library required for âsqrtâ
#include <math.h>
// System constants
#define deltat 0.001f // sampling period in seconds (shown as 1 ms)
#define gyroMeasError 3.14159265358979 * (5.0f / 180.0f) // gyroscope measurement error in rad/s (shown as 5 deg/s)
#define gyroMeasDrift 3.14159265358979 * (0.2f / 180.0f) // gyroscope measurement error in rad/s/s (shown as 0.2f deg/s/s)
#define beta sqrt(3.0f / 4.0f) * gyroMeasError // compute beta
#define zeta sqrt(3.0f / 4.0f) * gyroMeasDrift // compute zeta
// Global system variables
float a_x, a_y, a_z; // accelerometer measurements
float w_x, w_y, w_z; // gyroscope measurements in rad/s
float m_x, m_y, m_z; // magnetometer measurements
float SEq_1 = 1, SEq_2 = 0, SEq_3 = 0, SEq_4 = 0; // estimated orientation quaternion elements with initial conditions
float b_x = 1, b_z = 0; // reference direction of flux in earth frame
30
float w_bx = 0, w_by = 0, w_bz = 0; // estimate gyroscope biases error
// Function to compute one filter iteration
void filterUpdate(float w_x, float w_y, float w_z, float a_x, float a_y, float a_z, float m_x, float m_y, float m_z)
{
// local system variables
float norm; // vector norm
float SEqDot_omega_1, SEqDot_omega_2, SEqDot_omega_3, SEqDot_omega_4; // quaternion rate from gyroscopes elements
float f_1, f_2, f_3, f_4, f_5, f_6; // objective function elements
float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33, // objective function Jacobian elements
J_41, J_42, J_43, J_44, J_51, J_52, J_53, J_54, J_61, J_62, J_63, J_64; //
float SEqHatDot_1, SEqHatDot_2, SEqHatDot_3, SEqHatDot_4; // estimated direction of the gyroscope error
float w_err_x, w_err_y, w_err_z; // estimated direction of the gyroscope error (angular)
float h_x, h_y, h_z; // computed flux in the earth frame
// axulirary variables to avoid reapeated calcualtions
float halfSEq_1 = 0.5f * SEq_1;
float halfSEq_2 = 0.5f * SEq_2;
float halfSEq_3 = 0.5f * SEq_3;
float halfSEq_4 = 0.5f * SEq_4;
float twoSEq_1 = 2.0f * SEq_1;
float twoSEq_2 = 2.0f * SEq_2;
float twoSEq_3 = 2.0f * SEq_3;
float twoSEq_4 = 2.0f * SEq_4;
float twob_x = 2.0f * b_x;
float twob_z = 2.0f * b_z;
float twob_xSEq_1 = 2.0f * b_x * SEq_1;
float twob_xSEq_2 = 2.0f * b_x * SEq_2;
float twob_xSEq_3 = 2.0f * b_x * SEq_3;
float twob_xSEq_4 = 2.0f * b_x * SEq_4;
float twob_zSEq_1 = 2.0f * b_z * SEq_1;
float twob_zSEq_2 = 2.0f * b_z * SEq_2;
float twob_zSEq_3 = 2.0f * b_z * SEq_3;
float twob_zSEq_4 = 2.0f * b_z * SEq_4;
float SEq_1SEq_2;
float SEq_1SEq_3 = SEq_1 * SEq_3;
float SEq_1SEq_4;
float SEq_2SEq_3;
float SEq_2SEq_4 = SEq_2 * SEq_4;
float SEq_3SEq_4;
float twom_x = 2.0f * m_x;
float twom_y = 2.0f * m_y;
float twom_z = 2.0f * m_z;
// normalise the accelerometer measurement
norm = sqrt(a_x * a_x + a_y * a_y + a_z * a_z);
a_x /= norm;
a_y /= norm;
a_z /= norm;
// normalise the magnetometer measurement
norm = sqrt(m_x * m_x + m_y * m_y + m_z * m_z);
m_x /= norm;
m_y /= norm;
m_z /= norm;
// compute the objective function and Jacobian
f_1 = twoSEq_2 * SEq_4 - twoSEq_1 * SEq_3 - a_x;
f_2 = twoSEq_1 * SEq_2 + twoSEq_3 * SEq_4 - a_y;
f_3 = 1.0f - twoSEq_2 * SEq_2 - twoSEq_3 * SEq_3 - a_z;
f_4 = twob_x * (0.5f - SEq_3 * SEq_3 - SEq_4 * SEq_4) + twob_z * (SEq_2SEq_4 - SEq_1SEq_3) - m_x;
f_5 = twob_x * (SEq_2 * SEq_3 - SEq_1 * SEq_4) + twob_z * (SEq_1 * SEq_2 + SEq_3 * SEq_4) - m_y;
f_6 = twob_x * (SEq_1SEq_3 + SEq_2SEq_4) + twob_z * (0.5f - SEq_2 * SEq_2 - SEq_3 * SEq_3) - m_z;
J_11or24 = twoSEq_3; // J_11 negated in matrix multiplication
J_12or23 = 2.0f * SEq_4;
J_13or22 = twoSEq_1; // J_12 negated in matrix multiplication
J_14or21 = twoSEq_2;
J_32 = 2.0f * J_14or21; // negated in matrix multiplication
J_33 = 2.0f * J_11or24; // negated in matrix multiplication
J_41 = twob_zSEq_3; // negated in matrix multiplication
J_42 = twob_zSEq_4;
J_43 = 2.0f * twob_xSEq_3 + twob_zSEq_1; // negated in matrix multiplication
J_44 = 2.0f * twob_xSEq_4 - twob_zSEq_2; // negated in matrix multiplication
J_51 = twob_xSEq_4 - twob_zSEq_2; // negated in matrix multiplication
J_52 = twob_xSEq_3 + twob_zSEq_1;
J_53 = twob_xSEq_2 + twob_zSEq_4;
J_54 = twob_xSEq_1 - twob_zSEq_3; // negated in matrix multiplication
J_61 = twob_xSEq_3;
J_62 = twob_xSEq_4 - 2.0f * twob_zSEq_2;
J_63 = twob_xSEq_1 - 2.0f * twob_zSEq_3;
J_64 = twob_xSEq_2;
// compute the gradient (matrix multiplication)
SEqHatDot_1 = J_14or21 * f_2 - J_11or24 * f_1 - J_41 * f_4 - J_51 * f_5 + J_61 * f_6;
SEqHatDot_2 = J_12or23 * f_1 + J_13or22 * f_2 - J_32 * f_3 + J_42 * f_4 + J_52 * f_5 + J_62 * f_6;
SEqHatDot_3 = J_12or23 * f_2 - J_33 * f_3 - J_13or22 * f_1 - J_43 * f_4 + J_53 * f_5 + J_63 * f_6;
SEqHatDot_4 = J_14or21 * f_1 + J_11or24 * f_2 - J_44 * f_4 - J_54 * f_5 + J_64 * f_6;
// normalise the gradient to estimate direction of the gyroscope error
norm = sqrt(SEqHatDot_1 * SEqHatDot_1 + SEqHatDot_2 * SEqHatDot_2 + SEqHatDot_3 * SEqHatDot_3 + SEqHatDot_4 * SEqHatDot_4);
SEqHatDot_1 = SEqHatDot_1 / norm;
SEqHatDot_2 = SEqHatDot_2 / norm;
31
SEqHatDot_3 = SEqHatDot_3 / norm;
SEqHatDot_4 = SEqHatDot_4 / norm;
// compute angular estimated direction of the gyroscope error
w_err_x = twoSEq_1 * SEqHatDot_2 - twoSEq_2 * SEqHatDot_1 - twoSEq_3 * SEqHatDot_4 + twoSEq_4 * SEqHatDot_3;
w_err_y = twoSEq_1 * SEqHatDot_3 + twoSEq_2 * SEqHatDot_4 - twoSEq_3 * SEqHatDot_1 - twoSEq_4 * SEqHatDot_2;
w_err_z = twoSEq_1 * SEqHatDot_4 - twoSEq_2 * SEqHatDot_3 + twoSEq_3 * SEqHatDot_2 - twoSEq_4 * SEqHatDot_1;
// compute and remove the gyroscope baises
w_bx += w_err_x * deltat * zeta;
w_by += w_err_y * deltat * zeta;
w_bz += w_err_z * deltat * zeta;
w_x -= w_bx;
w_y -= w_by;
w_z -= w_bz;
// compute the quaternion rate measured by gyroscopes
SEqDot_omega_1 = -halfSEq_2 * w_x - halfSEq_3 * w_y - halfSEq_4 * w_z;
SEqDot_omega_2 = halfSEq_1 * w_x + halfSEq_3 * w_z - halfSEq_4 * w_y;
SEqDot_omega_3 = halfSEq_1 * w_y - halfSEq_2 * w_z + halfSEq_4 * w_x;
SEqDot_omega_4 = halfSEq_1 * w_z + halfSEq_2 * w_y - halfSEq_3 * w_x;
// compute then integrate the estimated quaternion rate
SEq_1 += (SEqDot_omega_1 - (beta * SEqHatDot_1)) * deltat;
SEq_2 += (SEqDot_omega_2 - (beta * SEqHatDot_2)) * deltat;
SEq_3 += (SEqDot_omega_3 - (beta * SEqHatDot_3)) * deltat;
SEq_4 += (SEqDot_omega_4 - (beta * SEqHatDot_4)) * deltat;
// normalise quaternion
norm = sqrt(SEq_1 * SEq_1 + SEq_2 * SEq_2 + SEq_3 * SEq_3 + SEq_4 * SEq_4);
SEq_1 /= norm;
SEq_2 /= norm;
SEq_3 /= norm;
SEq_4 /= norm;
// compute flux in the earth frame
SEq_1SEq_2 = SEq_1 * SEq_2; // recompute axulirary variables
SEq_1SEq_3 = SEq_1 * SEq_3;
SEq_1SEq_4 = SEq_1 * SEq_4;
SEq_3SEq_4 = SEq_3 * SEq_4;
SEq_2SEq_3 = SEq_2 * SEq_3;
SEq_2SEq_4 = SEq_2 * SEq_4;
h_x = twom_x * (0.5f - SEq_3 * SEq_3 - SEq_4 * SEq_4) + twom_y * (SEq_2SEq_3 - SEq_1SEq_4) + twom_z * (SEq_2SEq_4 + SEq_1SEq_3);
h_y = twom_x * (SEq_2SEq_3 + SEq_1SEq_4) + twom_y * (0.5f - SEq_2 * SEq_2 - SEq_4 * SEq_4) + twom_z * (SEq_3SEq_4 - SEq_1SEq_2);
h_z = twom_x * (SEq_2SEq_4 - SEq_1SEq_3) + twom_y * (SEq_3SEq_4 + SEq_1SEq_2) + twom_z * (0.5f - SEq_2 * SEq_2 - SEq_3 * SEq_3);
// normalise the flux vector to have only components in the x and z
b_x = sqrt((h_x * h_x) + (h_y * h_y));
b_z = h_z;
}
_______________________________________________
[email protected] mailing list
UNSUBSCRIBE and account-management ->
https://lists.puredata.info/listinfo/pd-list