Unhalted_reference_cycles is a useful event because it is not
    impacted by Turbo Mode or frequency scaling. It maintains a
    constant correlation to time and thus TSC. Furthermore, when
    the NMI watchdog is active, the kernel commandeers one counter
    to measure unhalted_core_cycles. With the patch, users get
    a cycle-capable counter back.

    The issue is that this architected event has an encoding
    of 0x013c which is identical to that of cpu_clk_unhalted:ref_p
    (or bus) yet the two events count cycles at a different rate.

    Consequently, the event code 0x013c in itself is not enough to
    disambiguate the two events. Up until now, perf_events would only
    put this event code on a generic counter and thus measure bus cycles.

    This patch introduces a custom encoding to disambiguate the two events.
    When a user passes the event code 0xff3c, the kernel interprets it as
    unhalted_reference_cycles and programs it ONLY on fixed counter 2.

    This problem is found on all Intel processors implementing fixed counters.

    The example below shows the difference between unhalted_reference_cycles
    and cpu_clk_unhalted:bus:

    $ task -e unhalted_reference_cycles,cpu_clk_unhalted:bus noploop 1
    PERF[type=4 val=0x53ff3c e_u=0 e_k=0 e_hv=1 precise=0] 
UNHALTED_REFERENCE_CYCLES
    PERF[type=4 val=0x53013c e_u=0 e_k=0 e_hv=1 precise=0] CPU_CLK_UNHALTED:BUS
    noploop for 1 seconds

    2,393,293,680 unhalted_reference_cycles (0.00% scaling)
      265,921,520 cpu_clk_unhalted:bus (0.00% scaling)

    This is on a 2.4GHz Intel Core machine. Bus speed is clearly 266Mhz.

Signed-off-by: Stephane Eranian <eran...@google.com>
---

diff --git a/arch/x86/kernel/cpu/perf_event.c b/arch/x86/kernel/cpu/perf_event.c
index a06261a..d4e78c7 100644
--- a/arch/x86/kernel/cpu/perf_event.c
+++ b/arch/x86/kernel/cpu/perf_event.c
@@ -169,6 +169,12 @@ struct cpu_hw_events {
                         X86_EVENT_CONSTRAINT_FL_ADD_GEN)
 
 /*
+ * only one specific fixed counter
+ */
+#define FIXED_ONLY_CONSTRAINT(c, n)    \
+       EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK, 0)
+
+/*
  * Constraint on the Event code + UMask
  */
 #define PEBS_EVENT_CONSTRAINT(c, n)    \
diff --git a/arch/x86/kernel/cpu/perf_event_intel.c 
b/arch/x86/kernel/cpu/perf_event_intel.c
index 008835c..82f3962 100644
--- a/arch/x86/kernel/cpu/perf_event_intel.c
+++ b/arch/x86/kernel/cpu/perf_event_intel.c
@@ -30,11 +30,24 @@ static struct event_constraint 
intel_core2_event_constraints[] =
        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
        /*
-        * Core2 has Fixed Counter 2 listed as CPU_CLK_UNHALTED.REF and event
-        * 0x013c as CPU_CLK_UNHALTED.BUS and specifies there is a fixed
-        * ratio between these counters.
+        * Fixed Counter 2 counts UNHALTED_REFERENCE_CYCLES at the
+        * CPU nominal frequency. The encoding for this architected
+        * event is 0x013c. However, when measured on a generic counter
+        * it counts cycles at a different fixed clock rate. It is then
+        * called CPU_CLK_UNHALTED.BUS.
+        *
+        * To disambiguate between the two events, we use a custom
+        * encoding:
+        * 0x013c (official): CPU_CLK_UNHALTED.BUS, any generic counters
+        * 0xff3c (pseudo)  : UNHALTED_REFERENCE_CYCLES, fixed counter 2 only
+        *
+        * 0xff3c is a pseudo event encoding. There is no risks of measuring
+        * bogus events because this encoding is restricted to fixed counter 2
+        * which, by construction, does not programming an event code.
+        * It is unlikely this encoding will ever be used for another generic
+        * event. 0x3c will remain a cycle event code because it's architected.
         */
-       /* FIXED_EVENT_CONSTRAINT(0x013c, 2),  CPU_CLK_UNHALTED.REF */
+       FIXED_ONLY_CONSTRAINT(0xff3c, 2),  /* UNHALTED_REFERENCE_CYCLES */
        INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
        INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
        INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
@@ -52,7 +65,11 @@ static struct event_constraint 
intel_nehalem_event_constraints[] =
 {
        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
-       /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
+       /*
+        * See comment above in intel_core2_event_constraint[] for
+        * an explanation of UNHALTED_REFERENCE_CYCLES
+        */
+       FIXED_ONLY_CONSTRAINT(0xff3c, 2),  /* UNHALTED_REFERENCE_CYCLES */
        INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
        INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
        INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
@@ -68,7 +85,11 @@ static struct event_constraint 
intel_westmere_event_constraints[] =
 {
        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
-       /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
+       /*
+        * See comment above in intel_core2_event_constraint[] for
+        * an explanation of UNHALTED_REFERENCE_CYCLES
+        */
+       FIXED_ONLY_CONSTRAINT(0xff3c, 2),  /* UNHALTED_REFERENCE_CYCLES */
        INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
        INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
        INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
@@ -80,7 +101,11 @@ static struct event_constraint 
intel_gen_event_constraints[] =
 {
        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
-       /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
+       /*
+        * See comment above in intel_core2_event_constraint[] for
+        * an explanation of UNHALTED_REFERENCE_CYCLES
+        */
+       FIXED_ONLY_CONSTRAINT(0xff3c, 2),  /* UNHALTED_REFERENCE_CYCLES */
        EVENT_CONSTRAINT_END
 };
 

------------------------------------------------------------------------------
The modern datacenter depends on network connectivity to access resources
and provide services. The best practices for maximizing a physical server's
connectivity to a physical network are well understood - see how these
rules translate into the virtual world? 
http://p.sf.net/sfu/oracle-sfdevnlfb
_______________________________________________
perfmon2-devel mailing list
perfmon2-devel@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/perfmon2-devel

Reply via email to