WTF? This makes no sense, can it be reverted?
> On Feb 18, 2015, at 10:57 PM, Tobin Isaac <[email protected]> wrote: > > On Wed, Feb 18, 2015 at 10:06:18PM -0600, Barry Smith wrote: >> >> Hmm, it seems GAMG is only doing 2 levels in master for all problems? >> >> ./ex29 -da_refine 8 -pc_type gamg -ksp_view >> >> uses only two levels. Makes no sense. >> >> Did someone break it? > > Here's the culprit: > > https://bitbucket.org/petsc/petsc/commits/25a145a7bcab6e5b3c8766679c77bee80f328690#Lsrc/ksp/pc/impls/gamg/gamg.cT664 > > It now always stops when there is only one active process. > > Toby > >> >> >> >> >> >> >>> On Feb 18, 2015, at 9:48 PM, Barry Smith <[email protected]> wrote: >>> >>> >>> Mark, >>> >>> When I run ksp/ksp/examples/tutorials/ex45 I get a VERY large coarse >>> problem. It seems to ignore the -pc_gamg_coarse_eq_limit 200 argument. Any >>> idea what is going on? >>> >>> Thanks >>> >>> Barry >>> >>> >>> $ ./ex45 -da_refine 3 -pc_type gamg -ksp_monitor -ksp_view -log_summary >>> -pc_gamg_coarse_eq_limit 200 >>> 0 KSP Residual norm 2.790769524030e+02 >>> 1 KSP Residual norm 4.484052193577e+01 >>> 2 KSP Residual norm 2.409368790441e+00 >>> 3 KSP Residual norm 1.553421589919e-01 >>> 4 KSP Residual norm 9.821441923699e-03 >>> 5 KSP Residual norm 5.610434857134e-04 >>> KSP Object: 1 MPI processes >>> type: gmres >>> GMRES: restart=30, using Classical (unmodified) Gram-Schmidt >>> Orthogonalization with no iterative refinement >>> GMRES: happy breakdown tolerance 1e-30 >>> maximum iterations=10000 >>> tolerances: relative=1e-05, absolute=1e-50, divergence=10000 >>> left preconditioning >>> using nonzero initial guess >>> using PRECONDITIONED norm type for convergence test >>> PC Object: 1 MPI processes >>> type: gamg >>> MG: type is MULTIPLICATIVE, levels=2 cycles=v >>> Cycles per PCApply=1 >>> Using Galerkin computed coarse grid matrices >>> Coarse grid solver -- level ------------------------------- >>> KSP Object: (mg_coarse_) 1 MPI processes >>> type: gmres >>> GMRES: restart=30, using Classical (unmodified) Gram-Schmidt >>> Orthogonalization with no iterative refinement >>> GMRES: happy breakdown tolerance 1e-30 >>> maximum iterations=1, initial guess is zero >>> tolerances: relative=1e-05, absolute=1e-50, divergence=10000 >>> left preconditioning >>> using NONE norm type for convergence test >>> PC Object: (mg_coarse_) 1 MPI processes >>> type: bjacobi >>> block Jacobi: number of blocks = 1 >>> Local solve is same for all blocks, in the following KSP and PC >>> objects: >>> KSP Object: (mg_coarse_sub_) 1 MPI processes >>> type: preonly >>> maximum iterations=1, initial guess is zero >>> tolerances: relative=1e-05, absolute=1e-50, divergence=10000 >>> left preconditioning >>> using NONE norm type for convergence test >>> PC Object: (mg_coarse_sub_) 1 MPI processes >>> type: lu >>> LU: out-of-place factorization >>> tolerance for zero pivot 2.22045e-14 >>> using diagonal shift on blocks to prevent zero pivot [INBLOCKS] >>> matrix ordering: nd >>> factor fill ratio given 5, needed 36.4391 >>> Factored matrix follows: >>> Mat Object: 1 MPI processes >>> type: seqaij >>> rows=16587, cols=16587 >>> package used to perform factorization: petsc >>> total: nonzeros=1.8231e+07, allocated nonzeros=1.8231e+07 >>> total number of mallocs used during MatSetValues calls =0 >>> not using I-node routines >>> linear system matrix = precond matrix: >>> Mat Object: 1 MPI processes >>> type: seqaij >>> rows=16587, cols=16587 >>> total: nonzeros=500315, allocated nonzeros=500315 >>> total number of mallocs used during MatSetValues calls =0 >>> not using I-node routines >>> linear system matrix = precond matrix: >>> Mat Object: 1 MPI processes >>> type: seqaij >>> rows=16587, cols=16587 >>> total: nonzeros=500315, allocated nonzeros=500315 >>> total number of mallocs used during MatSetValues calls =0 >>> not using I-node routines >>> Down solver (pre-smoother) on level 1 ------------------------------- >>> KSP Object: (mg_levels_1_) 1 MPI processes >>> type: chebyshev >>> Chebyshev: eigenvalue estimates: min = 0.0976343, max = 2.05032 >>> maximum iterations=2 >>> tolerances: relative=1e-05, absolute=1e-50, divergence=10000 >>> left preconditioning >>> using nonzero initial guess >>> using NONE norm type for convergence test >>> PC Object: (mg_levels_1_) 1 MPI processes >>> type: sor >>> SOR: type = local_symmetric, iterations = 1, local iterations = 1, >>> omega = 1 >>> linear system matrix = precond matrix: >>> Mat Object: 1 MPI processes >>> type: seqaij >>> rows=117649, cols=117649 >>> total: nonzeros=809137, allocated nonzeros=809137 >>> total number of mallocs used during MatSetValues calls =0 >>> not using I-node routines >>> Up solver (post-smoother) same as down solver (pre-smoother) >>> linear system matrix = precond matrix: >>> Mat Object: 1 MPI processes >>> type: seqaij >>> rows=117649, cols=117649 >>> total: nonzeros=809137, allocated nonzeros=809137 >>> total number of mallocs used during MatSetValues calls =0 >>> not using I-node routines >>> Residual norm 3.81135e-05 >>> ************************************************************************************************************************ >>> *** WIDEN YOUR WINDOW TO 120 CHARACTERS. Use 'enscript -r >>> -fCourier9' to print this document *** >>> ************************************************************************************************************************ >>> >>> ---------------------------------------------- PETSc Performance Summary: >>> ---------------------------------------------- >>> >>> ./ex45 on a arch-opt named Barrys-MacBook-Pro.local with 1 processor, by >>> barrysmith Wed Feb 18 21:38:03 2015 >>> Using Petsc Development GIT revision: v3.5.3-1998-geddef31 GIT Date: >>> 2015-02-18 11:05:09 -0600 >>> >>> Max Max/Min Avg Total >>> Time (sec): 1.103e+01 1.00000 1.103e+01 >>> Objects: 9.200e+01 1.00000 9.200e+01 >>> Flops: 1.756e+10 1.00000 1.756e+10 1.756e+10 >>> Flops/sec: 1.592e+09 1.00000 1.592e+09 1.592e+09 >>> MPI Messages: 0.000e+00 0.00000 0.000e+00 0.000e+00 >>> MPI Message Lengths: 0.000e+00 0.00000 0.000e+00 0.000e+00 >>> MPI Reductions: 0.000e+00 0.00000 >>> >>> Flop counting convention: 1 flop = 1 real number operation of type >>> (multiply/divide/add/subtract) >>> e.g., VecAXPY() for real vectors of length N --> >>> 2N flops >>> and VecAXPY() for complex vectors of length N --> >>> 8N flops >>> >>> Summary of Stages: ----- Time ------ ----- Flops ----- --- Messages --- >>> -- Message Lengths -- -- Reductions -- >>> Avg %Total Avg %Total counts %Total >>> Avg %Total counts %Total >>> 0: Main Stage: 1.1030e+01 100.0% 1.7556e+10 100.0% 0.000e+00 0.0% >>> 0.000e+00 0.0% 0.000e+00 0.0% >>> >>> ------------------------------------------------------------------------------------------------------------------------ >>> See the 'Profiling' chapter of the users' manual for details on >>> interpreting output. >>> Phase summary info: >>> Count: number of times phase was executed >>> Time and Flops: Max - maximum over all processors >>> Ratio - ratio of maximum to minimum over all processors >>> Mess: number of messages sent >>> Avg. len: average message length (bytes) >>> Reduct: number of global reductions >>> Global: entire computation >>> Stage: stages of a computation. Set stages with PetscLogStagePush() and >>> PetscLogStagePop(). >>> %T - percent time in this phase %F - percent flops in this phase >>> %M - percent messages in this phase %L - percent message lengths in >>> this phase >>> %R - percent reductions in this phase >>> Total Mflop/s: 10e-6 * (sum of flops over all processors)/(max time over >>> all processors) >>> ------------------------------------------------------------------------------------------------------------------------ >>> Event Count Time (sec) Flops >>> --- Global --- --- Stage --- Total >>> Max Ratio Max Ratio Max Ratio Mess Avg len >>> Reduct %T %F %M %L %R %T %F %M %L %R Mflop/s >>> ------------------------------------------------------------------------------------------------------------------------ >>> >>> --- Event Stage 0: Main Stage >>> >>> KSPGMRESOrthog 21 1.0 8.8868e-03 1.0 3.33e+07 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 3752 >>> KSPSetUp 5 1.0 4.3986e-03 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0 >>> KSPSolve 1 1.0 1.0995e+01 1.0 1.76e+10 1.0 0.0e+00 0.0e+00 >>> 0.0e+00100100 0 0 0 100100 0 0 0 1596 >>> VecMDot 21 1.0 4.7335e-03 1.0 1.67e+07 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 3522 >>> VecNorm 30 1.0 9.4804e-04 1.0 4.63e+06 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 4887 >>> VecScale 29 1.0 7.8293e-04 1.0 2.20e+06 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 2809 >>> VecCopy 14 1.0 7.7058e-04 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0 >>> VecSet 102 1.0 1.4530e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0 >>> VecAXPY 9 1.0 3.8154e-04 1.0 9.05e+05 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 2372 >>> VecAYPX 48 1.0 5.6449e-03 1.0 7.06e+06 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 1251 >>> VecAXPBYCZ 24 1.0 4.0700e-03 1.0 1.41e+07 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 3469 >>> VecMAXPY 29 1.0 5.1512e-03 1.0 2.04e+07 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 3960 >>> VecAssemblyBegin 1 1.0 6.7055e-08 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0 >>> VecAssemblyEnd 1 1.0 8.1025e-08 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0 >>> VecPointwiseMult 11 1.0 1.8083e-03 1.0 1.29e+06 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 716 >>> VecSetRandom 1 1.0 1.7628e-03 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0 >>> VecNormalize 29 1.0 1.7100e-03 1.0 6.60e+06 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 3858 >>> MatMult 58 1.0 5.0949e-02 1.0 8.39e+07 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 1647 >>> MatMultAdd 6 1.0 5.2584e-03 1.0 5.01e+06 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 952 >>> MatMultTranspose 6 1.0 6.1330e-03 1.0 5.01e+06 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 816 >>> MatSolve 12 1.0 2.0657e-01 1.0 4.37e+08 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 2 2 0 0 0 2 2 0 0 0 2117 >>> MatSOR 36 1.0 7.1355e-02 1.0 5.84e+07 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 1 0 0 0 0 1 0 0 0 0 818 >>> MatLUFactorSym 1 1.0 3.4310e-01 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 >>> 0.0e+00 3 0 0 0 0 3 0 0 0 0 0 >>> MatLUFactorNum 1 1.0 9.8038e+00 1.0 1.69e+10 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 89 96 0 0 0 89 96 0 0 0 1721 >>> MatConvert 1 1.0 5.6955e-03 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0 >>> MatScale 3 1.0 2.7223e-03 1.0 2.45e+06 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 901 >>> MatResidual 6 1.0 6.2142e-03 1.0 9.71e+06 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 1562 >>> MatAssemblyBegin 12 1.0 2.7413e-06 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0 >>> MatAssemblyEnd 12 1.0 2.4857e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0 >>> MatGetRow 470596 1.0 2.4337e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0 >>> MatGetRowIJ 1 1.0 2.3254e-03 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0 >>> MatGetOrdering 1 1.0 1.7668e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0 >>> MatCoarsen 1 1.0 8.5790e-03 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0 >>> MatView 5 1.0 2.2273e-04 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0 >>> MatAXPY 1 1.0 1.8864e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0 >>> MatMatMult 1 1.0 2.4513e-02 1.0 2.03e+06 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 83 >>> MatMatMultSym 1 1.0 1.7885e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0 >>> MatMatMultNum 1 1.0 6.6144e-03 1.0 2.03e+06 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 307 >>> MatPtAP 1 1.0 1.1460e-01 1.0 1.30e+07 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 1 0 0 0 0 1 0 0 0 0 114 >>> MatPtAPSymbolic 1 1.0 4.6803e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0 >>> MatPtAPNumeric 1 1.0 6.7781e-02 1.0 1.30e+07 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 1 0 0 0 0 1 0 0 0 0 192 >>> MatTrnMatMult 1 1.0 9.1702e-02 1.0 1.02e+07 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 1 0 0 0 0 1 0 0 0 0 111 >>> MatTrnMatMultSym 1 1.0 6.0173e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 >>> 0.0e+00 1 0 0 0 0 1 0 0 0 0 0 >>> MatTrnMatMultNum 1 1.0 3.1526e-02 1.0 1.02e+07 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 324 >>> MatGetSymTrans 2 1.0 4.2753e-03 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0 >>> PCGAMGgraph_AGG 1 1.0 6.9175e-02 1.0 1.62e+06 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 1 0 0 0 0 1 0 0 0 0 23 >>> PCGAMGcoarse_AGG 1 1.0 1.1130e-01 1.0 1.02e+07 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 1 0 0 0 0 1 0 0 0 0 92 >>> PCGAMGProl_AGG 1 1.0 2.9380e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 >>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0 >>> PCGAMGPOpt_AGG 1 1.0 9.1377e-02 1.0 5.15e+07 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 1 0 0 0 0 1 0 0 0 0 564 >>> PCSetUp 2 1.0 1.0587e+01 1.0 1.69e+10 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 96 97 0 0 0 96 97 0 0 0 1601 >>> PCSetUpOnBlocks 6 1.0 1.0165e+01 1.0 1.69e+10 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 92 96 0 0 0 92 96 0 0 0 1660 >>> PCApply 6 1.0 1.0503e+01 1.0 1.75e+10 1.0 0.0e+00 0.0e+00 >>> 0.0e+00 95 99 0 0 0 95 99 0 0 0 1662 >>> ------------------------------------------------------------------------------------------------------------------------ >>> >>> >>> >>
