On Aug 1, 2011, at 3:00 PM, Adam Byrd wrote:

> Hello,
> 
> I'm looking for help reducing the time and communication of a parallel 
> MatMatSolve using MUMPS. On a single processor I experience decent solve 
> times (~9 seconds each), but when moving to multiple processors I see longer 
> times with more cores. I've run with -log_summary and confirmed (practically) 
> all the time is spent in MatMatSolve. I'm fairly certain it's all 
> communication between nodes and I'm trying to figure out where I can make 
> optimizations, or if it is even feasible for this type of problem. It is a 
> parallel, dense,

     I hope you mean that the original matrix you use with MUMPS is sparse (you 
should not use MUMPS to solve dense linear systems).

> direct solve using MUMPS with an LU preconditioner. I know there are many 
> smaller optimizations that can be done in other areas, but at the moment it 
> is only the solve that concerns me.

     MUMPS will run slower on 2 processors than 1, this is just a fact of life. 
You will only gain with parallel for MUMPS for large problems.

   Barry



> 
> ---------------------------------------------- PETSc Performance Summary: 
> ----------------------------------------------
> 
> ./cntor on a complex-c named hpc-1-0.local with 2 processors, by abyrd Mon 
> Aug  1 16:25:51 2011
> Using Petsc Release Version 3.1.0, Patch 8, Thu Mar 17 13:37:48 CDT 2011
> 
>                          Max       Max/Min        Avg      Total 
> Time (sec):           1.307e+02      1.00000   1.307e+02
> Objects:              1.180e+02      1.00000   1.180e+02
> Flops:                0.000e+00      0.00000   0.000e+00  0.000e+00
> Flops/sec:            0.000e+00      0.00000   0.000e+00  0.000e+00
> Memory:               2.091e+08      1.00001              4.181e+08
> MPI Messages:         7.229e+03      1.00000   7.229e+03  1.446e+04
> MPI Message Lengths:  4.141e+08      1.00000   5.729e+04  8.283e+08
> MPI Reductions:       1.464e+04      1.00000
> 
> Flop counting convention: 1 flop = 1 real number operation of type 
> (multiply/divide/add/subtract)
>                             e.g., VecAXPY() for real vectors of length N --> 
> 2N flops
>                             and VecAXPY() for complex vectors of length N --> 
> 8N flops
> 
> Summary of Stages:   ----- Time ------  ----- Flops -----  --- Messages ---  
> -- Message Lengths --  -- Reductions --
>                         Avg     %Total     Avg     %Total   counts   %Total   
>   Avg         %Total   counts   %Total 
>  0:      Main Stage: 1.3072e+02 100.0%  0.0000e+00   0.0%  1.446e+04 100.0%  
> 5.729e+04      100.0%  1.730e+02   1.2% 
> 
> ------------------------------------------------------------------------------------------------------------------------
> See the 'Profiling' chapter of the users' manual for details on interpreting 
> output.
> Phase summary info:
>    Count: number of times phase was executed
>    Time and Flops: Max - maximum over all processors
>                    Ratio - ratio of maximum to minimum over all processors
>    Mess: number of messages sent
>    Avg. len: average message length
>    Reduct: number of global reductions
>    Global: entire computation
>    Stage: stages of a computation. Set stages with PetscLogStagePush() and 
> PetscLogStagePop().
>       %T - percent time in this phase         %F - percent flops in this phase
>       %M - percent messages in this phase     %L - percent message lengths in 
> this phase
>       %R - percent reductions in this phase
>    Total Mflop/s: 10e-6 * (sum of flops over all processors)/(max time over 
> all processors)
> ------------------------------------------------------------------------------------------------------------------------
> 
> 
>       ##########################################################
>       #                                                        #
>       #                          WARNING!!!                    #
>       #                                                        #
>       #   This code was compiled with a debugging option,      #
>       #   To get timing results run config/configure.py        #
>       #   using --with-debugging=no, the performance will      #
>       #   be generally two or three times faster.              #
>       #                                                        #
>       ##########################################################
> 
> 
> 
> 
>       ##########################################################
>       #                                                        #
>       #                          WARNING!!!                    #
>       #                                                        #
>       #   The code for various complex numbers numerical       #
>       #   kernels uses C++, which generally is not well        #
>       #   optimized.  For performance that is about 4-5 times  #
>       #   faster, specify --with-fortran-kernels=1             #
>       #   when running config/configure.py.                    #
>       #                                                        #
>       ##########################################################
> 
> 
> Event                Count      Time (sec)     Flops                          
>    --- Global ---  --- Stage ---   Total
>                    Max Ratio  Max     Ratio   Max  Ratio  Mess   Avg len 
> Reduct  %T %F %M %L %R  %T %F %M %L %R Mflop/s
> ------------------------------------------------------------------------------------------------------------------------
> 
> --- Event Stage 0: Main Stage
> 
> MatSolve           14400 1.0 1.2364e+02 1.0 0.00e+00 0.0 1.4e+04 5.7e+04 
> 2.0e+01 95  0100100  0  95  0100100 12     0
> MatLUFactorSym         4 1.0 2.0027e-05 1.4 0.00e+00 0.0 0.0e+00 0.0e+00 
> 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
> MatLUFactorNum         4 1.0 3.4223e+00 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 
> 2.4e+01  3  0  0  0  0   3  0  0  0 14     0
> MatConvert             1 1.0 2.3644e-01 2.4 0.00e+00 0.0 0.0e+00 0.0e+00 
> 1.1e+01  0  0  0  0  0   0  0  0  0  6     0
> MatAssemblyBegin      14 1.0 1.9959e-01 9.3 0.00e+00 0.0 3.0e+01 5.2e+04 
> 1.2e+01  0  0  0  0  0   0  0  0  0  7     0
> MatAssemblyEnd        14 1.0 1.9908e-01 1.1 0.00e+00 0.0 4.0e+00 2.8e+01 
> 2.0e+01  0  0  0  0  0   0  0  0  0 12     0
> MatGetRow             32 1.0 4.2677e-05 1.2 0.00e+00 0.0 0.0e+00 0.0e+00 
> 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
> MatGetSubMatrice       4 1.0 7.6661e-03 1.0 0.00e+00 0.0 1.6e+01 1.2e+05 
> 2.4e+01  0  0  0  0  0   0  0  0  0 14     0
> MatMatSolve            4 1.0 1.2380e+02 1.0 0.00e+00 0.0 1.4e+04 5.7e+04 
> 2.0e+01 95  0100100  0  95  0100100 12     0
> VecSet                 4 1.0 1.8590e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 
> 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
> VecScatterBegin    28800 1.0 2.2810e+00 2.2 0.00e+00 0.0 1.4e+04 5.7e+04 
> 0.0e+00  1  0100100  0   1  0100100  0     0
> VecScatterEnd      14400 1.0 4.1534e+00 2.2 0.00e+00 0.0 0.0e+00 0.0e+00 
> 0.0e+00  2  0  0  0  0   2  0  0  0  0     0
> KSPSetup               4 1.0 1.1060e-0212.6 0.00e+00 0.0 0.0e+00 0.0e+00 
> 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
> PCSetUp                4 1.0 3.4280e+00 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 
> 5.6e+01  3  0  0  0  0   3  0  0  0 32     0
> ------------------------------------------------------------------------------------------------------------------------
> 
> Memory usage is given in bytes:
> 
> Object Type          Creations   Destructions     Memory  Descendants' Mem.
> Reports information only for process 0.
> 
> --- Event Stage 0: Main Stage
> 
>               Matrix    27             27    208196712     0
>                  Vec    36             36      1027376     0
>          Vec Scatter    11             11         7220     0
>            Index Set    42             42        22644     0
>        Krylov Solver     1              1        34432     0
>       Preconditioner     1              1          752     0
> ========================================================================================================================
> Average time to get PetscTime(): 1.90735e-07
> Average time for MPI_Barrier(): 3.8147e-06
> Average time for zero size MPI_Send(): 7.51019e-06
> #PETSc Option Table entries:
> -log_summary
> -pc_factor_mat_solver_package mumps
> -pc_type lu
> #End of PETSc Option Table entries
> Compiled without FORTRAN kernels
> Compiled with full precision matrices (default)
> sizeof(short) 2 sizeof(int) 4 sizeof(long) 8 sizeof(void*) 8 
> sizeof(PetscScalar) 16
> Configure run at: Mon Jul 11 15:28:42 2011
> Configure options: PETSC_ARCH=complex-cpp-mumps --with-cc=mpicc 
> --with-fc=mpif90 --with-blas-lapack-dir=/usr/lib64 --with-shared 
> --with-clanguage=c++ --with-scalar-type=complex --download-mumps=1 
> --download-blacs=1 --download-scalapack=1 --download-parmetis=1 
> --with-cxx=mpicxx
> -----------------------------------------
> Libraries compiled on Mon Jul 11 15:39:58 EDT 2011 on sc.local 
> Machine characteristics: Linux sc.local 2.6.18-194.11.1.el5 #1 SMP Tue Aug 10 
> 19:05:06 EDT 2010 x86_64 x86_64 x86_64 GNU/Linux 
> Using PETSc directory: /panfs/storage.local/scs/home/abyrd/petsc-3.1-p8
> Using PETSc arch: complex-cpp-mumps
> -----------------------------------------
> Using C compiler: mpicxx -Wall -Wwrite-strings -Wno-strict-aliasing -g   
> -fPIC   
> Using Fortran compiler: mpif90 -fPIC -Wall -Wno-unused-variable -g    
> -----------------------------------------
> Using include paths: 
> -I/panfs/storage.local/scs/home/abyrd/petsc-3.1-p8/complex-cpp-mumps/include 
> -I/panfs/storage.local/scs/home/abyrd/petsc-3.1-p8/include 
> -I/panfs/storage.local/scs/home/abyrd/petsc-3.1-p8/complex-cpp-mumps/include 
> -I/usr/mpi/gnu/openmpi-1.4.2/include -I/usr/mpi/gnu/openmpi-1.4.2/lib64  
> ------------------------------------------
> Using C linker: mpicxx -Wall -Wwrite-strings -Wno-strict-aliasing -g 
> Using Fortran linker: mpif90 -fPIC -Wall -Wno-unused-variable -g  
> Using libraries: 
> -Wl,-rpath,/panfs/storage.local/scs/home/abyrd/petsc-3.1-p8/complex-cpp-mumps/lib
>  -L/panfs/storage.local/scs/home/abyrd/petsc-3.1-p8/complex-cpp-mumps/lib 
> -lpetsc       -lX11 
> -Wl,-rpath,/panfs/storage.local/scs/home/abyrd/petsc-3.1-p8/complex-cpp-mumps/lib
>  -L/panfs/storage.local/scs/home/abyrd/petsc-3.1-p8/complex-cpp-mumps/lib 
> -lcmumps -ldmumps -lsmumps -lzmumps -lmumps_common -lpord -lparmetis -lmetis 
> -lscalapack -lblacs -Wl,-rpath,/usr/lib64 -L/usr/lib64 -llapack -lblas -lnsl 
> -lrt -Wl,-rpath,/usr/mpi/gnu/openmpi-1.4.2/lib64 
> -L/usr/mpi/gnu/openmpi-1.4.2/lib64 
> -Wl,-rpath,/usr/lib/gcc/x86_64-redhat-linux/4.1.2 
> -L/usr/lib/gcc/x86_64-redhat-linux/4.1.2 -ldl -lmpi -lopen-rte -lopen-pal 
> -lnsl -lutil -lgcc_s -lpthread -lmpi_f90 -lmpi_f77 -lgfortran -lm -lm -lm -lm 
> -lmpi_cxx -lstdc++ -lmpi_cxx -lstdc++ -ldl -lmpi -lopen-rte -lopen-pal -lnsl 
> -lutil -lgcc_s -lpthread -ldl  
> 
> Respectfully,
> Adam Byrd
> <PETScCntor.zip>

Reply via email to