El 15/04/2013, a las 09:22, Sonya Blade escribi?: >> Let me put it more clearly: you are not getting eigenvector entries, your >> printing statement is >> nonsense (you >print a pointer as a floating point number), so you cannot >> say the imaginary part is >> nonzero. It is indeed >zero, SLEPc gives the right solution, your program is >> wrong. >> Jose > > Sorry and thank you for clarifying that, > One last question, I got the correct eigenvalues, now I got the > eigenvectors, but they differ from the exact solution. > > For example, for the first eigenvalue(2405.247) I got the following > eigenvector > set where it differ from the exact solution, what could be the possible > reason of that? > > Regards, > > Row Exact Results SLEPC RESULTS > 0 0.2255511 -0.014234 > 1 -5.2313502 0.330131 > 2 3.1352583 -0.197855 > 3 -4.4245184 0.279215 > 4 0.0898345 -0.005669 > 5 1.9278406 -0.121659 > 6 0.0033757 -0.000213 > 7 -0.7077308 0.044662 > 8 0.0687009 -0.004335 > 9 0.1684281 -0.010629 > 10 -2.81293611 0.177514 > 11 1.93270712 -0.121966 > 12 -0.00306213 0.000193 > 13 0.88278714 -0.055709 > 14 -0.70857415: 0.044715 > 15 0.03025516: -0.001909 > 16 -2.81094417: 0.177388 > 17 1.12005518: -0.070683 > 18 2.73596119: -0.172656 > 19 0.22734020: -0.014347 > 20 -4.42534221: 0.279267 > 21 2.22134222: -0.140181 > 22 -5.00448323: 0.315815 > 23 0.17399224: -0.01098 > 24 2.38934725: -0.150783 > 25 -3.75380226: 0.236889 > 26 0.09633427: -0.006079 > 27 0.48140228: -0.03038 > 28 -1.52250229: 0.09608 > 29 -0.00132830: 0.000084 > 30 1.16923331: -0.073786 > 31 0.09701232: -0.006122 > 32 0.00268833: -0.00017 > 33 1.59855934: -0.100879 > 34 -3.75642735: 0.237054 > 35 0.13951936: -0.008805 > 36 1.17316037: -0.074034 > 37 -1.32576838: 0.083664 > 38 -0.00203439: 0.000128 > 39 0.47943940: -0.030256 > 40 0.09694141: -0.006118 > 41 0.00071442: -0.000045 > 42 0.14814343: -0.009349 > 43 -5.23126844: 0.330126 > 44 2.33293345: -0.147223 > 45 3.01784046: -0.190445 > 46 -5.00416947: 0.315795 > 47 0.17591748: -0.011101 >
Eigenvectors are not unique. If you normalize your "exact" solution you will see that it coincides with SLEPc's answer. If you don't know what an eigenvector is, you will have a hard time using SLEPc. Jose
