To be concrete, the first matrix was https://sparse.tamu.edu/LAW/arabic-2005
and the second was https://sparse.tamu.edu/Schenk/nlpkkt200 (which looks
like it does come from the PDE domain?).

Regardless of the non-zero structure, there is still a significant hit when
moving from 1 gpu to multiple GPUs that causes a large number of device to
host copies to be performed. If this is a result of the PETSc
implementation thats fine -- but if there's something I can do to work
around that it would be great.

Rohan

On Thu, Feb 3, 2022 at 1:25 PM Barry Smith <[email protected]> wrote:

>
>   I suspect the new matrix has a very different parallel nonzero structure
> that results in MOST of the calculations taking place on the CPU (since the
> "off-diagonal" part of the matrix dominates the non-zero pattern). PETSc is
> not designed for this type of nonzero structure and will give a bad
> performance (CPU or GPU); it is not a "PDE-ish" type of nonzero structure.
>
>
>
> On Feb 3, 2022, at 2:59 PM, Rohan Yadav <[email protected]> wrote:
>
> I'm sorry, I did a little switch here. The original log view I sent for 2
> runs was on a different input matrix. Based on Barry's request I switched
> to a different matrix as the original one did not fit on 1 GPU.
>
> >  In the previously sent runs it was about 98% on GPU.
>
> Re 98% on the GPU though, my first email had a similar ratio in the log
> though:
> ```
>
> MatMatMultNum         30 1.0 4.2967e+01 1.0 6.34e+11 1.1 6.0e+01 9.4e+07 
> 0.0e+00 37100 86110  0  37100 86110  0 28598   920026      2 6.71e+03   30 
> 8.73e+04 98
>
> ```
>
> The follow up log might be slightly different as well because I pushed a new 
> log stage as requested by Stefano.
>
>
> Rohan
>
>
> On Thu, Feb 3, 2022 at 11:50 AM Barry Smith <[email protected]> wrote:
>
>>
>>   Mark,
>>
>>     Good eye. Something is definitely very different between this run and
>> the previous (options, code change?). In the previously sent runs it was
>> about 98% on GPU.
>>
>>   Barry
>>
>>
>> On Feb 3, 2022, at 12:29 PM, Rohan Yadav <[email protected]> wrote:
>>
>> >    Please send the code that builds the sparse B matrix and the 
>> > setMatToConstant()
>> routine.
>>
>> Setting to a constant:
>> ```
>> void setMatToConstant(Mat mat, PetscScalar c) {
>>
>>   PetscInt rStart, rEnd, m, n;
>>   MatGetSize(mat, &m, &n);
>>   MatGetOwnershipRange(mat, &rStart, &rEnd);
>>   for (int i = rStart; i < rEnd; i++) {
>>     for (int j = 0; j < n; j++) {
>>       MatSetValue(mat, i, j, c, INSERT_VALUES);
>>     }
>>   }
>>   MatAssemblyBegin(mat, MAT_FINAL_ASSEMBLY);
>>   MatAssemblyEnd(mat, MAT_FINAL_ASSEMBLY);
>> }
>> ```
>>
>> Loading sparse matrix from disk:
>>
>> ```
>>
>> int loadMatrixFromFile(Mat* A, char* filename) {
>>   auto ierr = MatCreate(PETSC_COMM_WORLD, A); CHKERRQ(ierr);
>>   MatSetFromOptions(*A);
>>   PetscViewer viewer;
>>   PetscViewerCreate(PETSC_COMM_WORLD, &viewer);
>>   PetscViewerSetType(viewer, PETSCVIEWERBINARY);
>>   PetscViewerFileSetMode(viewer, FILE_MODE_READ);
>>   PetscViewerFileSetName(viewer, filename);
>>   MatLoad(*A, viewer);
>>   return 0;
>> }
>>
>> ```
>>
>> These are only called once and should not affect the computation in a loop 
>> though.
>>
>> > But first please verify that if you run with one MPI rank the "on GPU" and 
>> > the overall flop rates for the MatMatMult() are almost the same and there 
>> > is no copy from the GPU for each multiply?
>>
>>
>> Yes, with 1 mpi rank / GPU there are no extra copies done. As soon as I
>> move to 2 ranks I see this behavior.
>>
>> Here are updated logs with a new stage for 2 ranks. I've staged the logs
>> into "MyComputation".
>>
>> ```
>> ---------------------------------------------- PETSc Performance Summary:
>> ----------------------------------------------
>>
>> /g/g15/yadav2/taco/petsc/bin/benchmark on a  named lassen572 with 2
>> processors, by yadav2 Thu Feb  3 09:27:30 2022
>> Using Petsc Release Version 3.16.3, unknown
>>
>>                          Max       Max/Min     Avg       Total
>> Time (sec):           2.091e+02     1.001   2.090e+02
>> Objects:              4.800e+01     1.000   4.800e+01
>> Flop:                 4.344e+11     1.019   4.303e+11  8.606e+11
>> Flop/sec:             2.077e+09     1.018   2.059e+09  4.118e+09
>> MPI Messages:         3.500e+01     1.000   3.500e+01  7.000e+01
>> MPI Message Lengths:  6.316e+10     1.000   1.805e+09  1.263e+11
>> MPI Reductions:       8.100e+01     1.000
>>
>> Flop counting convention: 1 flop = 1 real number operation of type
>> (multiply/divide/add/subtract)
>>                             e.g., VecAXPY() for real vectors of length N
>> --> 2N flop
>>                             and VecAXPY() for complex vectors of length N
>> --> 8N flop
>>
>> Summary of Stages:   ----- Time ------  ----- Flop ------  --- Messages
>> ---  -- Message Lengths --  -- Reductions --
>>                         Avg     %Total     Avg     %Total    Count
>> %Total     Avg         %Total    Count   %Total
>>  0:      Main Stage: 1.0555e+02  50.5%  2.8686e+11  33.3%  3.000e+01
>>  42.9%  1.466e+09       34.8%  4.300e+01  53.1%
>>  1:   MyComputation: 1.0345e+02  49.5%  5.7373e+11  66.7%  4.000e+01
>>  57.1%  2.058e+09       65.2%  2.000e+01  24.7%
>>
>>
>> ------------------------------------------------------------------------------------------------------------------------
>> See the 'Profiling' chapter of the users' manual for details on
>> interpreting output.
>> Phase summary info:
>>    Count: number of times phase was executed
>>    Time and Flop: Max - maximum over all processors
>>                   Ratio - ratio of maximum to minimum over all processors
>>    Mess: number of messages sent
>>    AvgLen: average message length (bytes)
>>    Reduct: number of global reductions
>>    Global: entire computation
>>    Stage: stages of a computation. Set stages with PetscLogStagePush()
>> and PetscLogStagePop().
>>       %T - percent time in this phase         %F - percent flop in this
>> phase
>>       %M - percent messages in this phase     %L - percent message
>> lengths in this phase
>>       %R - percent reductions in this phase
>>    Total Mflop/s: 10e-6 * (sum of flop over all processors)/(max time
>> over all processors)
>>    GPU Mflop/s: 10e-6 * (sum of flop on GPU over all processors)/(max GPU
>> time over all processors)
>>    CpuToGpu Count: total number of CPU to GPU copies per processor
>>    CpuToGpu Size (Mbytes): 10e-6 * (total size of CPU to GPU copies per
>> processor)
>>    GpuToCpu Count: total number of GPU to CPU copies per processor
>>    GpuToCpu Size (Mbytes): 10e-6 * (total size of GPU to CPU copies per
>> processor)
>>    GPU %F: percent flops on GPU in this event
>>
>> ------------------------------------------------------------------------------------------------------------------------
>> Event                Count      Time (sec)     Flop
>>        --- Global ---  --- Stage ----  Total   GPU    - CpuToGpu -   -
>> GpuToCpu - GPU
>>                    Max Ratio  Max     Ratio   Max  Ratio  Mess   AvgLen
>>  Reduct  %T %F %M %L %R  %T %F %M %L %R Mflop/s Mflop/s Count   Size
>> Count   Size  %F
>>
>> ---------------------------------------------------------------------------------------------------------------------------------------------------------------
>>
>> --- Event Stage 0: Main Stage
>>
>> BuildTwoSided          2 1.0 4.0085e-0136.3 0.00e+00 0.0 2.0e+00 4.0e+00
>> 2.0e+00  0  0  3  0  2   0  0  7  0  5     0       0      0 0.00e+00    0
>> 0.00e+00  0
>> BuildTwoSidedF         1 1.0 4.0080e-0113602.0 0.00e+00 0.0 0.0e+00
>> 0.0e+00 1.0e+00  0  0  0  0  1   0  0  0  0  2     0       0      0
>> 0.00e+00    0 0.00e+00  0
>> MatAssemblyBegin      12 1.0 4.0084e-017217.1 0.00e+00 0.0 0.0e+00
>> 0.0e+00 1.0e+00  0  0  0  0  1   0  0  0  0  2     0       0      0
>> 0.00e+00    0 0.00e+00  0
>> MatAssemblyEnd        12 1.0 3.4970e+00 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
>> 6.0e+00  2  0  0  0  7   3  0  0  0 14     0       0      0 0.00e+00    0
>> 0.00e+00  0
>> MatZeroEntries         1 1.0 2.4093e-03 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00  0  0  0  0  0   0  0  0  0  0     0       0      0 0.00e+00    0
>> 0.00e+00  0
>> MatLoad                1 1.0 1.3756e+01 1.0 0.00e+00 0.0 6.0e+00 4.6e+08
>> 2.1e+01  7  0  9  2 26  13  0 20  6 49     0       0      0 0.00e+00    0
>> 0.00e+00  0
>> MatMatMultSym         20 1.0 4.7919e+00 2.4 0.00e+00 0.0 4.0e+00 1.6e+07
>> 1.2e+01  2  0  6  0 15   3  0 13  0 28     0       0      0 0.00e+00    0
>> 0.00e+00  0
>> MatMatMultNum         10 1.0 4.9853e+01 1.1 1.45e+11 1.0 2.0e+01 2.1e+09
>> 0.0e+00 23 33 29 33  0  46100 67 94  0  5754   182686      2 2.23e+03   10
>> 2.08e+04  5
>> MatCUSPARSCopyTo       1 1.0 2.2646e-02 1.1 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00  0  0  0  0  0   0  0  0  0  0     0       0      1 1.55e+02    0
>> 0.00e+00  0
>> MatDenseCopyTo         1 1.0 1.6636e-01 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00  0  0  0  0  0   0  0  0  0  0     0       0      1 2.08e+03    0
>> 0.00e+00  0
>> MatDenseCopyFrom      11 1.0 3.0463e+00 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00  1  0  0  0  0   3  0  0  0  0     0       0      0 0.00e+00   11
>> 2.29e+04  0
>> VecSet                 3 1.0 5.0035e-04 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00  0  0  0  0  0   0  0  0  0  0     0       0      0 0.00e+00    0
>> 0.00e+00  0
>> SFSetGraph             1 1.0 4.4294e-03 1.1 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00  0  0  0  0  0   0  0  0  0  0     0       0      0 0.00e+00    0
>> 0.00e+00  0
>> SFSetUp                1 1.0 1.3982e-01 1.0 0.00e+00 0.0 4.0e+00 1.6e+07
>> 1.0e+00  0  0  6  0  1   0  0 13  0  2     0       0      0 0.00e+00    0
>> 0.00e+00  0
>>
>> --- Event Stage 1: MyComputation
>>
>> MatAssemblyBegin      20 1.0 1.6894e-05 2.7 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00  0  0  0  0  0   0  0  0  0  0     0       0      0 0.00e+00    0
>> 0.00e+00  0
>> MatAssemblyEnd        20 1.0 1.5575e-05 1.5 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00  0  0  0  0  0   0  0  0  0  0     0       0      0 0.00e+00    0
>> 0.00e+00  0
>> MatMatMultSym         40 1.0 1.0096e+01 2.6 0.00e+00 0.0 0.0e+00 0.0e+00
>> 2.0e+01  3  0  0  0 25   7  0  0  0100     0       0      0 0.00e+00    0
>> 0.00e+00  0
>> MatMatMultNum         20 1.0 9.9320e+01 1.1 2.90e+11 1.0 4.0e+01 2.1e+09
>> 0.0e+00 46 67 57 65  0  93100100100  0  5777   182577      0 0.00e+00   20
>> 4.16e+04  5
>> MatDenseCopyFrom      20 1.0 5.5380e+00 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00  3  0  0  0  0   5  0  0  0  0     0       0      0 0.00e+00   20
>> 4.16e+04  0
>>
>> ---------------------------------------------------------------------------------------------------------------------------------------------------------------
>>
>> Memory usage is given in bytes:
>>
>> Object Type          Creations   Destructions     Memory  Descendants'
>> Mem.
>> Reports information only for process 0.
>>
>> --- Event Stage 0: Main Stage
>>
>>               Matrix    17             10  20381695840     0.
>>               Viewer     2              0            0     0.
>>               Vector     4              1         1792     0.
>>            Index Set     2              2     31848152     0.
>>    Star Forest Graph     3              0            0     0.
>>
>> --- Event Stage 1: MyComputation
>>
>>               Matrix    20             20  40763391680     0.
>>
>> ========================================================================================================================
>> Average time to get PetscTime(): 3.96e-08
>> Average time for MPI_Barrier(): 8.184e-07
>> Average time for zero size MPI_Send(): 2.8165e-06
>> #PETSc Option Table entries:
>> -bench spmm
>> -enable_gpu
>> -log_view
>> -mat_type aijcusparse
>> -matload_block_size 1
>> -matrix /p/gpfs1/yadav2/tensors/petsc/nlpkkt200.petsc
>> -n 20
>> -vec_type cuda
>> -warmup 10
>> #End of PETSc Option Table entries
>> Compiled without FORTRAN kernels
>> Compiled with full precision matrices (default)
>> sizeof(short) 2 sizeof(int) 4 sizeof(long) 8 sizeof(void*) 8
>> sizeof(PetscScalar) 8 sizeof(PetscInt) 4
>> Configure options: --download-c2html=0 --download-hwloc=0
>> --download-sowing=0 --prefix=./petsc-install/ --with-64-bit-indices=0
>> --with-blaslapack-lib="/usr/tcetmp/packages/lapack/lapack-3.9.0-gcc-7.3.1/lib/liblapack.so
>> /usr/tcetmp/packages/lapack/lapack-3.9.0-gcc-7.3.1/lib/libblas.so"
>> --with-cc=/usr/tce/packages/spectrum-mpi/spectrum-mpi-rolling-release-gcc-8.3.1/bin/mpigcc
>> --with-clanguage=C --with-cxx-dialect=C++17
>> --with-cxx=/usr/tce/packages/spectrum-mpi/spectrum-mpi-rolling-release-gcc-8.3.1/bin/mpig++
>> --with-cuda=1 --with-debugging=0
>> --with-fc=/usr/tce/packages/spectrum-mpi/spectrum-mpi-rolling-release-gcc-8.3.1/bin/mpigfortran
>> --with-fftw=0
>> --with-hdf5-dir=/usr/tcetmp/packages/petsc/build/3.13.0/spack/opt/spack/linux-rhel7-power9le/xl_r-16.1/hdf5-1.10.6-e7e7urb5k7va3ib7j4uro56grvzmcmd4
>> --with-hdf5=1 --with-mumps=0 --with-precision=double --with-scalapack=0
>> --with-scalar-type=real --with-shared-libraries=1 --with-ssl=0
>> --with-suitesparse=0 --with-trilinos=0 --with-valgrind=0 --with-x=0
>> --with-zlib-include=/usr/include --with-zlib-lib=/usr/lib64/libz.so
>> --with-zlib=1 CFLAGS="-g -DNoChange" COPTFLAGS="-O3" CXXFLAGS="-O3"
>> CXXOPTFLAGS="-O3" FFLAGS=-g CUDAFLAGS=-std=c++17 FOPTFLAGS=
>> PETSC_ARCH=arch-linux-c-opt
>> -----------------------------------------
>> Libraries compiled on 2022-01-21 06:41:50 on lassen111
>> Machine characteristics:
>> Linux-4.14.0-115.21.2.1chaos.ch6a.ppc64le-ppc64le-with-redhat-7.6-Maipo
>> Using PETSc directory: /g/g15/yadav2/taco/petsc/petsc/petsc-install
>> Using PETSc arch:
>> -----------------------------------------
>>
>> Using C compiler:
>> /usr/tce/packages/spectrum-mpi/spectrum-mpi-rolling-release-gcc-8.3.1/bin/mpigcc
>> -g -DNoChange -fPIC "-O3"
>> Using Fortran compiler:
>> /usr/tce/packages/spectrum-mpi/spectrum-mpi-rolling-release-gcc-8.3.1/bin/mpigfortran
>> -g -fPIC
>> -----------------------------------------
>>
>> Using include paths:
>> -I/g/g15/yadav2/taco/petsc/petsc/petsc-install/include
>> -I/usr/tcetmp/packages/petsc/build/3.13.0/spack/opt/spack/linux-rhel7-power9le/xl_r-16.1/hdf5-1.10.6-e7e7urb5k7va3ib7j4uro56grvzmcmd4/include
>> -I/usr/include -I/usr/tce/packages/cuda/cuda-11.1.0/include
>> -----------------------------------------
>>
>> Using C linker:
>> /usr/tce/packages/spectrum-mpi/spectrum-mpi-rolling-release-gcc-8.3.1/bin/mpigcc
>> Using Fortran linker:
>> /usr/tce/packages/spectrum-mpi/spectrum-mpi-rolling-release-gcc-8.3.1/bin/mpigfortran
>> Using libraries:
>> -Wl,-rpath,/g/g15/yadav2/taco/petsc/petsc/petsc-install/lib
>> -L/g/g15/yadav2/taco/petsc/petsc/petsc-install/lib -lpetsc
>> -Wl,-rpath,/usr/tcetmp/packages/lapack/lapack-3.9.0-gcc-7.3.1/lib
>> -L/usr/tcetmp/packages/lapack/lapack-3.9.0-gcc-7.3.1/lib
>> -Wl,-rpath,/usr/tcetmp/packages/petsc/build/3.13.0/spack/opt/spack/linux-rhel7-power9le/xl_r-16.1/hdf5-1.10.6-e7e7urb5k7va3ib7j4uro56grvzmcmd4/lib
>> -L/usr/tcetmp/packages/petsc/build/3.13.0/spack/opt/spack/linux-rhel7-power9le/xl_r-16.1/hdf5-1.10.6-e7e7urb5k7va3ib7j4uro56grvzmcmd4/lib
>> -Wl,-rpath,/usr/tce/packages/cuda/cuda-11.1.0/lib64
>> -L/usr/tce/packages/cuda/cuda-11.1.0/lib64
>> -Wl,-rpath,/usr/tce/packages/spectrum-mpi/ibm/spectrum-mpi-rolling-release/lib
>> -L/usr/tce/packages/spectrum-mpi/ibm/spectrum-mpi-rolling-release/lib
>> -Wl,-rpath,/usr/tce/packages/gcc/gcc-8.3.1/rh/usr/lib/gcc/ppc64le-redhat-linux/8
>> -L/usr/tce/packages/gcc/gcc-8.3.1/rh/usr/lib/gcc/ppc64le-redhat-linux/8
>> -Wl,-rpath,/usr/tce/packages/gcc/gcc-8.3.1/rh/usr/lib/gcc
>> -L/usr/tce/packages/gcc/gcc-8.3.1/rh/usr/lib/gcc
>> -Wl,-rpath,/usr/tce/packages/gcc/gcc-8.3.1/rh/usr/lib64
>> -L/usr/tce/packages/gcc/gcc-8.3.1/rh/usr/lib64
>> -Wl,-rpath,/usr/tce/packages/gcc/gcc-8.3.1/rh/usr/lib
>> -L/usr/tce/packages/gcc/gcc-8.3.1/rh/usr/lib -llapack -lblas -lhdf5_hl
>> -lhdf5 -lm /usr/lib64/libz.so -lcuda -lcudart -lcufft -lcublas -lcusparse
>> -lcusolver -lcurand -lstdc++ -ldl -lmpiprofilesupport -lmpi_ibm_usempi
>> -lmpi_ibm_mpifh -lmpi_ibm -lgfortran -lm -lgfortran -lm -lgcc_s -lquadmath
>> -lpthread -lquadmath -lstdc++ -ldl
>> -----------------------------------------
>> ```
>>
>> On Wed, Feb 2, 2022 at 11:59 PM Stefano Zampini <
>> [email protected]> wrote:
>>
>>>
>>>
>>> 1) It uses MatMPIDenseScatter() to move to the other ranks their needed
>>>> rows of the C matrix. That function has the call MatDenseGetArrayRead()
>>>> normally would trigger a copy of C up to the CPU each time. But since C is
>>>> not changing in your test run I guess it only triggers one copy.
>>>>
>>>> 2) If uses
>>>> MatMatMultNumericAdd_SeqAIJ_SeqDense(aij->B,workB,cdense->A,PETSC_TRUE);CHKERRQ(ierr);
>>>> to do the off diagonal part of the product but this triggers for each
>>>> multiply a copy of the result matrix from the CPU to the GPU (hugely
>>>> expensive)
>>>>
>>>> For performance there needs to be a new routine 
>>>> MatMatMultNumeric_MPIAIJCUSPRSE_MPICUDADense()
>>>> that is smarter about the needed MPI communication so it only moves exactly
>>>> what it needs to the other ranks and it does the off-diagonal part of the
>>>> product on the GPU so it does not need to copy the result up to the CPU.
>>>>
>>>>
>>> MPIAIJCUSPARSE uses MatProductSetFromOptions_MPIAIJBACKEND
>>>
>>> Rohan
>>> I would suggest to add PetscLogStage around your performance loop (do a
>>> warmup outside of it) and send the relevant portion of the log
>>>
>>>
>>>> Barry
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>> ---------------------------------------------- PETSc Performance Summary: 
>>>> ----------------------------------------------
>>>>
>>>> /g/g15/yadav2/taco/petsc/bin/benchmark on a  named lassen457 with 2 
>>>> processors, by yadav2 Wed Feb  2 17:23:19 2022
>>>> Using Petsc Release Version 3.16.3, unknown
>>>>
>>>>                          Max       Max/Min     Avg       Total
>>>> Time (sec):           1.163e+02     1.000   1.163e+02
>>>> Objects:              4.800e+01     1.000   4.800e+01
>>>> Flop:                 6.338e+11     1.065   6.144e+11  1.229e+12
>>>> Flop/sec:             5.451e+09     1.065   5.284e+09  1.057e+10
>>>> MPI Messages:         3.500e+01     1.000   3.500e+01  7.000e+01
>>>> MPI Message Lengths:  2.544e+09     1.000   7.267e+07  5.087e+09
>>>> MPI Reductions:       8.100e+01     1.000
>>>>
>>>> Flop counting convention: 1 flop = 1 real number operation of type 
>>>> (multiply/divide/add/subtract)
>>>>                             e.g., VecAXPY() for real vectors of length N 
>>>> --> 2N flop
>>>>                             and VecAXPY() for complex vectors of length N 
>>>> --> 8N flop
>>>>
>>>> Summary of Stages:   ----- Time ------  ----- Flop ------  --- Messages 
>>>> ---  -- Message Lengths --  -- Reductions --
>>>>                         Avg     %Total     Avg     %Total    Count   
>>>> %Total     Avg         %Total    Count   %Total
>>>>  0:      Main Stage: 1.1628e+02 100.0%  1.2288e+12 100.0%  7.000e+01 
>>>> 100.0%  7.267e+07      100.0%  6.300e+01  77.8%
>>>>
>>>> ------------------------------------------------------------------------------------------------------------------------
>>>> See the 'Profiling' chapter of the users' manual for details on 
>>>> interpreting output.
>>>> Phase summary info:
>>>>    Count: number of times phase was executed
>>>>    Time and Flop: Max - maximum over all processors
>>>>                   Ratio - ratio of maximum to minimum over all processors
>>>>    Mess: number of messages sent
>>>>    AvgLen: average message length (bytes)
>>>>    Reduct: number of global reductions
>>>>    Global: entire computation
>>>>    Stage: stages of a computation. Set stages with PetscLogStagePush() and 
>>>> PetscLogStagePop().
>>>>       %T - percent time in this phase         %F - percent flop in this 
>>>> phase
>>>>       %M - percent messages in this phase     %L - percent message lengths 
>>>> in this phase
>>>>       %R - percent reductions in this phase
>>>>    Total Mflop/s: 10e-6 * (sum of flop over all processors)/(max time over 
>>>> all processors)
>>>>    GPU Mflop/s: 10e-6 * (sum of flop on GPU over all processors)/(max GPU 
>>>> time over all processors)
>>>>    CpuToGpu Count: total number of CPU to GPU copies per processor
>>>>    CpuToGpu Size (Mbytes): 10e-6 * (total size of CPU to GPU copies per 
>>>> processor)
>>>>    GpuToCpu Count: total number of GPU to CPU copies per processor
>>>>    GpuToCpu Size (Mbytes): 10e-6 * (total size of GPU to CPU copies per 
>>>> processor)
>>>>    GPU %F: percent flops on GPU in this event
>>>> ------------------------------------------------------------------------------------------------------------------------
>>>> Event                Count      Time (sec)     Flop                        
>>>>       --- Global ---  --- Stage ----  Total   GPU    - CpuToGpu -   - 
>>>> GpuToCpu - GPU
>>>>                    Max Ratio  Max     Ratio   Max  Ratio  Mess   AvgLen  
>>>> Reduct  %T %F %M %L %R  %T %F %M %L %R Mflop/s Mflop/s Count   Size   
>>>> Count   Size  %F
>>>> ---------------------------------------------------------------------------------------------------------------------------------------------------------------
>>>>
>>>> --- Event Stage 0: Main Stage
>>>>
>>>> BuildTwoSided          2 1.0 4.4400e-01567.5 0.00e+00 0.0 2.0e+00 4.0e+00 
>>>> 2.0e+00  0  0  3  0  2   0  0  3  0  3     0       0      0 0.00e+00    0 
>>>> 0.00e+00  0
>>>> BuildTwoSidedF         1 1.0 4.4395e-0115659.1 0.00e+00 0.0 0.0e+00 
>>>> 0.0e+00 1.0e+00  0  0  0  0  1   0  0  0  0  2     0       0      0 
>>>> 0.00e+00    0 0.00e+00  0
>>>> MatAssemblyBegin      32 1.0 4.4400e-017378.9 0.00e+00 0.0 0.0e+00 0.0e+00 
>>>> 1.0e+00  0  0  0  0  1   0  0  0  0  2     0       0      0 0.00e+00    0 
>>>> 0.00e+00  0
>>>> MatAssemblyEnd        32 1.0 1.8511e+00 2.2 0.00e+00 0.0 0.0e+00 0.0e+00 
>>>> 6.0e+00  1  0  0  0  7   1  0  0  0 10     0       0      0 0.00e+00    0 
>>>> 0.00e+00  0
>>>> MatZeroEntries         1 1.0 3.3306e-03 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 
>>>> 0.0e+00  0  0  0  0  0   0  0  0  0  0     0       0      0 0.00e+00    0 
>>>> 0.00e+00  0
>>>> MatLoad                1 1.0 1.7220e+01 1.0 0.00e+00 0.0 6.0e+00 -8.8e+07 
>>>> 2.1e+01 15  0  9-10 26  15  0  9-10 33     0       0      0 0.00e+00    0 
>>>> 0.00e+00  0
>>>> MatMatMultSym         60 1.0 9.2215e-01 2.6 0.00e+00 0.0 4.0e+00 7.3e+05 
>>>> 3.2e+01  1  0  6  0 40   1  0  6  0 51     0       0      0 0.00e+00    0 
>>>> 0.00e+00  0
>>>> MatMatMultNum         30 1.0 4.2967e+01 1.0 6.34e+11 1.1 6.0e+01 9.4e+07 
>>>> 0.0e+00 37100 86110  0  37100 86110  0 28598   920026      2 6.71e+03   30 
>>>> 8.73e+04 98
>>>> MatCUSPARSCopyTo       1 1.0 4.4761e-01 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 
>>>> 0.0e+00  0  0  0  0  0   0  0  0  0  0     0       0      1 3.80e+03    0 
>>>> 0.00e+00  0
>>>> MatDenseCopyTo         1 1.0 2.2742e-01 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 
>>>> 0.0e+00  0  0  0  0  0   0  0  0  0  0     0       0      1 2.91e+03    0 
>>>> 0.00e+00  0
>>>> MatDenseCopyFrom      31 1.0 1.2006e+01 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 
>>>> 0.0e+00 10  0  0  0  0  10  0  0  0  0     0       0      0 0.00e+00   31 
>>>> 9.02e+04  0
>>>> VecSet                 3 1.0 4.1917e-04 1.1 0.00e+00 0.0 0.0e+00 0.0e+00 
>>>> 0.0e+00  0  0  0  0  0   0  0  0  0  0     0       0      0 0.00e+00    0 
>>>> 0.00e+00  0
>>>> SFSetGraph             1 1.0 1.9180e-04 1.1 0.00e+00 0.0 0.0e+00 0.0e+00 
>>>> 0.0e+00  0  0  0  0  0   0  0  0  0  0     0       0      0 0.00e+00    0 
>>>> 0.00e+00  0
>>>> SFSetUp                1 1.0 1.3672e-02 1.1 0.00e+00 0.0 4.0e+00 7.3e+05 
>>>> 1.0e+00  0  0  6  0  1   0  0  6  0  2     0       0      0 0.00e+00    0 
>>>> 0.00e+00  0
>>>> ---------------------------------------------------------------------------------------------------------------------------------------------------------------
>>>>
>>>> Memory usage is given in bytes:
>>>>
>>>> Object Type          Creations   Destructions     Memory  Descendants' Mem.
>>>> Reports information only for process 0.
>>>>
>>>> --- Event Stage 0: Main Stage
>>>>
>>>>               Matrix    37             30   2867511840     0.
>>>>               Viewer     2              0            0     0.
>>>>               Vector     4              1         1792     0.
>>>>            Index Set     2              2      1495248     0.
>>>>    Star Forest Graph     3              0            0     0.
>>>> ========================================================================================================================
>>>> Average time to get PetscTime(): 3.83e-08
>>>> Average time for MPI_Barrier(): 7.874e-07
>>>> Average time for zero size MPI_Send(): 3.4035e-06
>>>> #PETSc Option Table entries:
>>>> -bench spmm
>>>> -enable_gpu
>>>> -log_view
>>>> -mat_type aijcusparse
>>>> -matload_block_size 1
>>>> -matrix /p/gpfs1/yadav2/tensors/petsc/arabic-2005.petsc
>>>> -n 20
>>>> -vec_type cuda
>>>> -warmup 10
>>>> ```
>>>>
>>>>
>>>> Thanks,
>>>>
>>>>
>>>> Rohan Yadav
>>>>
>>>>
>>>>
>>>>
>>>
>>> --
>>> Stefano
>>>
>>
>>
>

Reply via email to