On 1/5/22 00:58, Andres Freund wrote:
> Hi,
> 
> On 2021-06-27 19:55:24 +0200, Tomas Vondra wrote:
>> estimating joins is one of the significant gaps related to extended
>> statistics, and I've been regularly asked about what we might do about
>> that. This is an early experimental patch that I think might help us
>> with improving this, possible even in PG15.
> 
> The tests in this patch fail:
> https://cirrus-ci.com/task/5304621299138560
> https://api.cirrus-ci.com/v1/artifact/task/5304621299138560/regress_diffs/src/test/regress/regression.diffs
> 
> Looks like the regression test output hasn't been updated?
> 

Yeah, I haven't updated some of the test output because some of those
changes are a bit wrong (and I think that's fine for a PoC patch). I
should have mentioned that in the message, though. Sorry about that.

There are three types of failures:


1) Changes to deparsed statistics definition in \d command:

-    "public.ctlt_all_a_b_stat" ON a, b FROM ctlt_all
+    "public.ctlt_all_a_b_stat" (ndistinct, dependencies, mcv) ON a, b
FROM ctlt_all

This happens because there's a new kind "sample" but it's not set by
default if creating new statistics, and the deparsing logic decides it
means it has to list the kinds explicitly. I've fixed this in the
attached patch, but it was mostly harmless and I'm not sure this is how
sample should behave.


2) Three GUC parameters allowing to enable/disable sampling for
different parts of a query (scan, join, correlated join sampling). I
still consider those GUCs temporary, for experiments, but I've added
them to the expected output.


3) Changes in estimates for OR conditions - a couple estimates get less
accurate, because OR clauses are handled as a single clause the first
time we pass them to statext_clauselist_selectivity(). So we combine the
results incorrectly. OR clauses may need some changes, because it's
causing issues in other patches too (e.g. in the "Var op Var" one).


I haven't done anything about (3) yet - it's a valid issue and needs to
be fixed (either by changing how we handle OR clauses, or maybe handling
samples and MCVs at the same time). Or maybe some other way. In any
case, there is more important stuff that needs fixing first.

The main issue is planning overhead - for the example in the first
message, with a simple query joining two tables, you'll see this:

   Planning Time: 603.442 ms
   Execution Time: 1071.735 ms

There's a couple reasons why it takes this long:


1) We sample the same relation repeatedly - once as a "scan" and then
while estimating joins. And for this query we do that in three different
contexts:

- set_joinrel_size_estimates
- populate_joinrel_with_paths (twice)

I guess we'll get different number of samples for different queries, but
it'll get worse for queries joining more tables etc. It seems fairly
simple to cache the samples - for example in StatisticExtInfo (or maybe
somewhere else, to keep just one sample per relation, not per RTE).

Unfortunately, I'm not sure this works for "independent" samples, not
for correlated ones (which are just FK lookups for another sample, so
that depends on what's the other sample). Which is a bummer, because
correlated samples are the more expensive ones :-(


2) The correlated samples are currently built using a query, executed
through SPI in a loop. So given a "driving" sample of 30k rows, we do
30k lookups - that'll take time, even if we do that just once and cache
the results.

I'm sure there there's room for some improvement, though - for example
we don't need to fetch all columns included in the statistics object,
but just stuff referenced by the clauses we're estimating. That could
improve chance of using IOS etc.

I wonder if there's a more efficient way to do this, in a batched manner
or something ... But even then it'll still be quite expensive.


The only other alternative I can think of is collecting samples during
ANALYZE, and storing them somewhere. That'll be difficult for correlated
samples, particularly for transitive cases (in snowflake schema). But I
believe it's doable (at least for cases covered by FK constraints).

But I'm not sure where/how to store the samples. An obvious option would
be to serialize them into pg_statistic_ext_data, and I'll try doing that
(it's  a bit like a huge MCV without any cutoff). But maybe there's a
better way that would not require constant serialization/deserialization
of many tuples.


Any ideas about these options?

regards

-- 
Tomas Vondra
EnterpriseDB: http://www.enterprisedb.com
The Enterprise PostgreSQL Company
diff --git a/src/backend/commands/statscmds.c b/src/backend/commands/statscmds.c
index f7419b8f562..b25edbfa6e5 100644
--- a/src/backend/commands/statscmds.c
+++ b/src/backend/commands/statscmds.c
@@ -83,13 +83,14 @@ CreateStatistics(CreateStatsStmt *stmt)
 	Oid			relid;
 	ObjectAddress parentobject,
 				myself;
-	Datum		types[4];		/* one for each possible type of statistic */
+	Datum		types[5];		/* one for each possible type of statistic */
 	int			ntypes;
 	ArrayType  *stxkind;
 	bool		build_ndistinct;
 	bool		build_dependencies;
 	bool		build_mcv;
 	bool		build_expressions;
+	bool		build_sample;	/* XXX misleading, we don't build samples */
 	bool		requested_type = false;
 	int			i;
 	ListCell   *cell;
@@ -345,6 +346,7 @@ CreateStatistics(CreateStatsStmt *stmt)
 	build_ndistinct = false;
 	build_dependencies = false;
 	build_mcv = false;
+	build_sample = false;
 	foreach(cell, stmt->stat_types)
 	{
 		char	   *type = strVal(lfirst(cell));
@@ -364,6 +366,11 @@ CreateStatistics(CreateStatsStmt *stmt)
 			build_mcv = true;
 			requested_type = true;
 		}
+		else if (strcmp(type, "sample") == 0)
+		{
+			build_sample = true;
+			requested_type = true;
+		}
 		else
 			ereport(ERROR,
 					(errcode(ERRCODE_SYNTAX_ERROR),
@@ -374,6 +381,11 @@ CreateStatistics(CreateStatsStmt *stmt)
 	/*
 	 * If no statistic type was specified, build them all (but only when the
 	 * statistics is defined on more than one column/expression).
+	 *
+	 * XXX We keep sampling disabled by default, otherwise building the rest
+	 * of statistics kinds would be somewhat pointless (the sample is applied
+	 * first). But maybe we should enable this just like the other kinds and
+	 * then use GUCs to enable or disable this at runtime.
 	 */
 	if ((!requested_type) && (numcols >= 2))
 	{
@@ -465,6 +477,8 @@ CreateStatistics(CreateStatsStmt *stmt)
 		types[ntypes++] = CharGetDatum(STATS_EXT_MCV);
 	if (build_expressions)
 		types[ntypes++] = CharGetDatum(STATS_EXT_EXPRESSIONS);
+	if (build_sample)
+		types[ntypes++] = CharGetDatum(STATS_EXT_SAMPLE);
 	Assert(ntypes > 0 && ntypes <= lengthof(types));
 	stxkind = construct_array(types, ntypes, CHAROID, 1, true, TYPALIGN_CHAR);
 
diff --git a/src/backend/optimizer/path/clausesel.c b/src/backend/optimizer/path/clausesel.c
index 06f836308d0..290572fd813 100644
--- a/src/backend/optimizer/path/clausesel.c
+++ b/src/backend/optimizer/path/clausesel.c
@@ -134,10 +134,19 @@ clauselist_selectivity_ext(PlannerInfo *root,
 	 * If there's exactly one clause, just go directly to
 	 * clause_selectivity_ext(). None of what we might do below is relevant.
 	 */
+
+	/*
+	 * XXX For joins we may have a single join clause, but additional clauses
+	 * on the joined relations, so we can still consider using extended stats
+	 * to calculate conditional probability.
+	 *
+	 * XXX Maybe this should simply add (!use_extended_stats) condition?
+	 *
 	if (list_length(clauses) == 1)
 		return clause_selectivity_ext(root, (Node *) linitial(clauses),
 									  varRelid, jointype, sjinfo,
 									  use_extended_stats);
+	*/
 
 	/*
 	 * Determine if these clauses reference a single relation.  If so, and if
@@ -157,6 +166,24 @@ clauselist_selectivity_ext(PlannerInfo *root,
 											&estimatedclauses, false);
 	}
 
+	/*
+	 * Try applying extended statistics to joins. There's not much we can do to
+	 * detect when this is worth it, but we can check that there are at least
+	 * some join clauses, and that at least some of the rels have extended stats.
+	 *
+	 * XXX Isn't this mutualy exclusive with the preceding block calculating
+	 * estimates for a single relation? Probably yes, because that block deals
+	 * just non-join clauses, while here we look at joins.
+	 */
+	if (use_extended_stats &&
+		statext_try_join_estimates(root, clauses, varRelid, jointype, sjinfo,
+						 		   estimatedclauses))
+	{
+		s1 *= statext_clauselist_join_selectivity(root, clauses, varRelid,
+												  jointype, sjinfo,
+												  &estimatedclauses);
+	}
+
 	/*
 	 * Apply normal selectivity estimates for remaining clauses. We'll be
 	 * careful to skip any clauses which were already estimated above.
diff --git a/src/backend/optimizer/util/plancat.c b/src/backend/optimizer/util/plancat.c
index a5002ad8955..d937451b2f0 100644
--- a/src/backend/optimizer/util/plancat.c
+++ b/src/backend/optimizer/util/plancat.c
@@ -1452,6 +1452,20 @@ get_relation_statistics(RelOptInfo *rel, Relation relation)
 
 		get_relation_statistics_worker(&stainfos, rel, statOid, false, keys, exprs);
 
+		/* samples are built at runtime, so only check if it's enabled */
+		if (statext_is_kind_enabled(htup, STATS_EXT_SAMPLE))
+		{
+			StatisticExtInfo *info = makeNode(StatisticExtInfo);
+
+			info->statOid = statOid;
+			info->rel = rel;
+			info->kind = STATS_EXT_SAMPLE;
+			info->keys = bms_copy(keys);
+			info->exprs = exprs;
+
+			stainfos = lappend(stainfos, info);
+		}
+
 		ReleaseSysCache(htup);
 		bms_free(keys);
 	}
diff --git a/src/backend/parser/parse_utilcmd.c b/src/backend/parser/parse_utilcmd.c
index 0eea214dd89..1a1814f1972 100644
--- a/src/backend/parser/parse_utilcmd.c
+++ b/src/backend/parser/parse_utilcmd.c
@@ -1909,6 +1909,8 @@ generateClonedExtStatsStmt(RangeVar *heapRel, Oid heapRelid,
 			stat_types = lappend(stat_types, makeString("dependencies"));
 		else if (enabled[i] == STATS_EXT_MCV)
 			stat_types = lappend(stat_types, makeString("mcv"));
+		else if (enabled[i] == STATS_EXT_SAMPLE)
+			stat_types = lappend(stat_types, makeString("sample"));
 		else if (enabled[i] == STATS_EXT_EXPRESSIONS)
 			/* expression stats are not exposed to users */
 			continue;
diff --git a/src/backend/statistics/extended_stats.c b/src/backend/statistics/extended_stats.c
index 87fe82ed114..43448b0c38a 100644
--- a/src/backend/statistics/extended_stats.c
+++ b/src/backend/statistics/extended_stats.c
@@ -19,21 +19,27 @@
 #include "access/detoast.h"
 #include "access/genam.h"
 #include "access/htup_details.h"
+#include "access/relation.h"
 #include "access/table.h"
 #include "catalog/indexing.h"
 #include "catalog/pg_collation.h"
+#include "catalog/pg_constraint.h"
 #include "catalog/pg_statistic_ext.h"
 #include "catalog/pg_statistic_ext_data.h"
 #include "executor/executor.h"
+#include "executor/spi.h"
 #include "commands/defrem.h"
 #include "commands/progress.h"
 #include "miscadmin.h"
 #include "nodes/nodeFuncs.h"
+#include "nodes/pathnodes.h"
 #include "optimizer/clauses.h"
 #include "optimizer/optimizer.h"
+#include "optimizer/pathnode.h"
 #include "parser/parsetree.h"
 #include "pgstat.h"
 #include "postmaster/autovacuum.h"
+#include "rewrite/rewriteManip.h"
 #include "statistics/extended_stats_internal.h"
 #include "statistics/statistics.h"
 #include "utils/acl.h"
@@ -45,6 +51,7 @@
 #include "utils/lsyscache.h"
 #include "utils/memutils.h"
 #include "utils/rel.h"
+#include "utils/ruleutils.h"
 #include "utils/selfuncs.h"
 #include "utils/syscache.h"
 #include "utils/typcache.h"
@@ -103,6 +110,61 @@ static StatsBuildData *make_build_data(Relation onerel, StatExtEntry *stat,
 									   int numrows, HeapTuple *rows,
 									   VacAttrStats **stats, int stattarget);
 
+/*
+ * Runtime samples used to estimate scans and joins.
+ */
+typedef struct Sample
+{
+	int			nrows;
+	int			maxrows;
+
+	Bitmapset  *attnums;
+	List	   *exprs;
+
+	/*
+	 * We don't keep the original heap tuples, we extract and keep just the
+	 * interesting attibutes to save space (hopefully).
+	 *
+	 * XXX We might deduplicate the values, which would save a lot of memory
+	 * for data with a lot of repetitions. Which is quite common.
+	 */
+	Datum	   *values;
+	bool	   *isnull;
+} Sample;
+
+static Sample *statext_collect_sample(PlannerInfo *root,
+									  StatisticExtInfo *stat);
+
+static Sample *statext_collect_correlated_sample(PlannerInfo *root,
+												 StatisticExtInfo *stat,
+												 StatisticExtInfo *stat2,
+												 Sample *sample,
+												 List *clauses);
+
+static Selectivity sample_clauselist_selectivity(PlannerInfo *root,
+												 StatisticExtInfo *stat, Sample *sample,
+												 List *clauses, int varRelid,
+												 JoinType jointype, SpecialJoinInfo *sjinfo,
+												 RelOptInfo *rel, bool is_or);
+
+static bool stat_covers_expressions(StatisticExtInfo *stat, List *exprs,
+									Bitmapset **expr_idxs);
+
+static List *statext_sample_get_conditions(PlannerInfo *root,
+										   RelOptInfo *rel,
+										   StatisticExtInfo *info);
+
+static bool *statext_sample_eval_conditions(PlannerInfo *root, RelOptInfo *rel,
+											StatisticExtInfo *stat, Sample *sample,
+											Selectivity *sel);
+
+/* various (mostly developer-oriented) GUCs */
+bool enable_sample_estimates_scan = true;
+bool enable_sample_estimates_join = true;
+bool enable_sample_join_correlate = true;
+
+/* 1% might be a bit too much, perhaps we should cap it to statistics target? */
+double estimate_sample_rate = 0.01;
 
 /*
  * Compute requested extended stats, using the rows sampled for the plain
@@ -418,6 +480,46 @@ statext_is_kind_built(HeapTuple htup, char type)
 	return !heap_attisnull(htup, attnum, NULL);
 }
 
+/*
+ * statext_is_kind_enabled
+ *		Is this stat kind enabled in the given pg_statistic_ext tuple?
+ */
+bool
+statext_is_kind_enabled(HeapTuple htup, char type)
+{
+	int			i;
+	ArrayType  *arr;
+	char	   *enabled;
+
+	Datum		datum;
+	bool		isnull;
+
+	/* decode the stxkind char array into a list of chars */
+	datum = SysCacheGetAttr(STATEXTOID, htup,
+							Anum_pg_statistic_ext_stxkind, &isnull);
+	Assert(!isnull);
+	arr = DatumGetArrayTypeP(datum);
+	if (ARR_NDIM(arr) != 1 ||
+		ARR_HASNULL(arr) ||
+		ARR_ELEMTYPE(arr) != CHAROID)
+		elog(ERROR, "stxkind is not a 1-D char array");
+	enabled = (char *) ARR_DATA_PTR(arr);
+
+	for (i = 0; i < ARR_DIMS(arr)[0]; i++)
+	{
+		Assert((enabled[i] == STATS_EXT_NDISTINCT) ||
+			   (enabled[i] == STATS_EXT_DEPENDENCIES) ||
+			   (enabled[i] == STATS_EXT_MCV) ||
+			   (enabled[i] == STATS_EXT_EXPRESSIONS) ||
+			   (enabled[i] == STATS_EXT_SAMPLE));
+
+		if (enabled[i] == type)
+			return true;
+	}
+
+	return false;
+}
+
 /*
  * Return a list (of StatExtEntry) of statistics objects for the given relation.
  */
@@ -479,7 +581,8 @@ fetch_statentries_for_relation(Relation pg_statext, Oid relid)
 			Assert((enabled[i] == STATS_EXT_NDISTINCT) ||
 				   (enabled[i] == STATS_EXT_DEPENDENCIES) ||
 				   (enabled[i] == STATS_EXT_MCV) ||
-				   (enabled[i] == STATS_EXT_EXPRESSIONS));
+				   (enabled[i] == STATS_EXT_EXPRESSIONS) ||
+				   (enabled[i] == STATS_EXT_SAMPLE));
 			entry->types = lappend_int(entry->types, (int) enabled[i]);
 		}
 
@@ -1155,6 +1258,103 @@ has_stats_of_kind(List *stats, char requiredkind)
 	return false;
 }
 
+/*
+ * find_matching_sample
+ *		Search for a sample statistics covering all the attributes.
+ *
+ * Both attnums and expressions in the join clause are required to be covered
+ * by the statistics. Additional restrictions on base relations are considered
+ * as extra conditions - but those are not required to be covered, we only use
+ * them to pick "better" sample.
+ *
+ * So for example with a query
+ *
+ * t1 JOIN t2 ON (t1.a = t2.a AND t1.b = t2.b) AND t1.c = 10 AND t2.d < 100
+ *
+ * any statistics (on either side of the join) covering (a,b) will be eligible,
+ * but those covering the columns in WHERE clauses will be seen as better.
+ *
+ * XXX The requirement that all the attributes need to be covered might be
+ * too strong. Maybe we could relax it a bit, and search for stats (on both
+ * sides of the join) with the largest overlap. But we don't really expect
+ * many candidate samples, so this simple approach seems sufficient for now.
+ */
+StatisticExtInfo *
+find_matching_sample(PlannerInfo *root, RelOptInfo *rel,
+					 Bitmapset *attnums, List *exprs)
+{
+	ListCell   *l;
+	StatisticExtInfo *sample = NULL;
+	List *stats = rel->statlist;
+
+	foreach(l, stats)
+	{
+		StatisticExtInfo *stat = (StatisticExtInfo *) lfirst(l);
+		List *conditions1 = NIL,
+			 *conditions2 = NIL;
+
+		/* We only care about samples statistics here. */
+		if (stat->kind != STATS_EXT_SAMPLE)
+			continue;
+
+		/*
+		 * Ignore stats not covering all the attributes/expressions.
+		 *
+		 * XXX Maybe we shouldn't be so strict and consider only partial
+		 * matches for join clauses too?
+		 */
+		if (!bms_is_subset(attnums, stat->keys) ||
+			!stat_covers_expressions(stat, exprs, NULL))
+			continue;
+
+		/* If there's no matching sample yet, keep it. */
+		if (!sample)
+		{
+			sample = stat;
+			continue;
+		}
+
+		/*
+		 * OK, we have two candidate statistics and we need to pick. We'll
+		 * use two simple heuristics: We prefer smaller statistics (fewer
+		 * columns), on the assumption that a smaller statistics probably
+		 * represents a larger fraction of the data (fewer combinations
+		 * with higher counts). But we also like if the statistics covers
+		 * some additional conditions at the baserel level, because this
+		 * may affect the data distribition. Of course, those two metrics
+		 * are contradictory - smaller stats are less likely to cover as
+		 * many conditions as a larger one.
+		 *
+		 * XXX For now we simply prefer smaller statistics, but maybe it
+		 * should be the other way around.
+		 */
+		if (bms_num_members(sample->keys) + list_length(sample->exprs) >
+			bms_num_members(stat->keys) + list_length(stat->exprs))
+		{
+			sample = stat;
+			continue;
+		}
+
+		/*
+		 * Now inspect the base restrictinfo conditions too. We need to be
+		 * more careful because we didn't check which of those clauses are
+		 * compatible, so we need to run statext_is_compatible_clause.
+		 *
+		 * XXX This should be moved before the previous check, probably. This
+		 * way a "smaller" statistics will be preferred, no matter if that
+		 * means some conditions will be unusable.
+		 */
+		conditions1 = statext_sample_get_conditions(root, rel, stat);
+		conditions2 = statext_sample_get_conditions(root, rel, sample);
+
+		/* if the new statistics covers more conditions, use it */
+		if (list_length(conditions2) > list_length(conditions1))
+			sample = stat;
+	}
+
+	return sample;
+}
+
 /*
  * stat_find_expression
  *		Search for an expression in statistics object's list of expressions.
@@ -1650,6 +1850,216 @@ statext_is_compatible_clause(PlannerInfo *root, Node *clause, Index relid,
 	return true;
 }
 
+/*
+ * statext_sample_clauselist_selectivity
+ *		Estimate clauses using the best multi-column statistics sample.
+ *
+ * Applies available extended (multi-column) statistics on a table. There may
+ * be multiple applicable statistics (with respect to the clauses), in which
+ * case we use greedy approach. In each round we select the best statistic on
+ * a table (measured by the number of attributes extracted from the clauses
+ * and covered by it), and compute the selectivity for the supplied clauses.
+ * We repeat this process with the remaining clauses (if any), until none of
+ * the available statistics can be used.
+ *
+ * This is similar to statext_mcv_clauselist_selectivity, but it only considers
+ * statistics with run-time samples, not MCV lists. We try to apply it before
+ * MCV lists, and the remaining clauses are estimated by MCVs.
+ *
+ * 'estimatedclauses' is an input/output parameter.  We set bits for the
+ * 0-based 'clauses' indexes we estimate for and also skip clause items that
+ * already have a bit set.
+ *
+ * XXX In principle, samples might cover much wider range of clauses - almost
+ * any condition can be evaluated on the sample (as long as all the input vars
+ * are in the sample), and then we can use that. For the MCV this would not
+ * work well as the function might move values from the non-MCV part to the
+ * MCV, but that's impossible to calculate.  But for now we ignore this and
+ * just use statext_is_compatible_clause, we can relax this later.
+ */
+static Selectivity
+statext_sample_clauselist_selectivity(PlannerInfo *root, List *clauses, int varRelid,
+									  JoinType jointype, SpecialJoinInfo *sjinfo,
+									  RelOptInfo *rel, Bitmapset **estimatedclauses,
+									  bool is_or)
+{
+	ListCell   *l;
+	Bitmapset **list_attnums;	/* attnums extracted from the clause */
+	List	  **list_exprs;		/* expressions matched to any statistic */
+	int			listidx;
+	Selectivity sel = (is_or) ? 0.0 : 1.0;
+	Sample	   *sample;
+	RangeTblEntry *rte = planner_rt_fetch(rel->relid, root);
+
+	/* check if there's any stats that might be useful for us. */
+	if (!has_stats_of_kind(rel->statlist, STATS_EXT_SAMPLE) ||
+		!enable_sample_estimates_scan)
+		return sel;
+
+	list_attnums = (Bitmapset **) palloc(sizeof(Bitmapset *) *
+										 list_length(clauses));
+
+	/* expressions extracted from complex expressions */
+	list_exprs = (List **) palloc(sizeof(Node *) * list_length(clauses));
+
+	/*
+	 * Pre-process the clauses list to extract the attnums and expressions
+	 * seen in each item.  We need to determine if there are any clauses which
+	 * will be useful for selectivity estimations with extended stats.  Along
+	 * the way we'll record all of the attnums and expressions for each clause
+	 * in lists which we'll reference later so we don't need to repeat the
+	 * same work again.
+	 *
+	 * We also skip clauses that we already estimated using different types of
+	 * statistics (we treat them as incompatible).
+	 */
+	listidx = 0;
+	foreach(l, clauses)
+	{
+		Node	   *clause = (Node *) lfirst(l);
+		Bitmapset  *attnums = NULL;
+		List	   *exprs = NIL;
+
+		if (!bms_is_member(listidx, *estimatedclauses) &&
+			statext_is_compatible_clause(root, clause, rel->relid, &attnums, &exprs))
+		{
+			list_attnums[listidx] = attnums;
+			list_exprs[listidx] = exprs;
+		}
+		else
+		{
+			list_attnums[listidx] = NULL;
+			list_exprs[listidx] = NIL;
+		}
+
+		listidx++;
+	}
+
+	/* apply as many extended statistics as possible */
+	while (true)
+	{
+		StatisticExtInfo *stat;
+		List	   *stat_clauses;
+		Bitmapset  *simple_clauses;
+
+		/* find the best suited statistics object for these attnums */
+		stat = choose_best_statistics(rel->statlist, STATS_EXT_SAMPLE,
+									  rte->inh, list_attnums, list_exprs,
+									  list_length(clauses));
+
+		/*
+		 * if no (additional) matching stats could be found then we've nothing
+		 * to do
+		 */
+		if (!stat)
+			break;
+
+		/*
+		 * XXX should be done later, after determining which attnums and exprs
+		 * need to be sampled.
+		 */
+		sample = statext_collect_sample(root, stat);
+
+		/* Ensure choose_best_statistics produced an expected stats type. */
+		Assert(stat->kind == STATS_EXT_SAMPLE);
+
+		/* now filter the clauses to be estimated using the selected stat */
+		stat_clauses = NIL;
+
+		/* record which clauses are simple (single column or expression) */
+		simple_clauses = NULL;
+
+		listidx = -1;
+		foreach(l, clauses)
+		{
+			/* Increment the index before we decide if to skip the clause. */
+			listidx++;
+
+			/*
+			 * Ignore clauses from which we did not extract any attnums or
+			 * expressions (this needs to be consistent with what we do in
+			 * choose_best_statistics).
+			 *
+			 * This also eliminates already estimated clauses - both those
+			 * estimated before and during applying extended statistics.
+			 *
+			 * XXX This check is needed because both bms_is_subset and
+			 * stat_covers_expressions return true for empty attnums and
+			 * expressions.
+			 */
+			if (!list_attnums[listidx] && !list_exprs[listidx])
+				continue;
+
+			/*
+			 * The clause was not estimated yet, and we've extracted either
+			 * attnums of expressions from it. Ignore it if it's not fully
+			 * covered by the chosen statistics.
+			 *
+			 * We need to check both attributes and expressions, and reject if
+			 * either is not covered.
+			 */
+			if (!bms_is_subset(list_attnums[listidx], stat->keys) ||
+				!stat_covers_expressions(stat, list_exprs[listidx], NULL))
+				continue;
+
+			/*
+			 * Now we know the clause is compatible (we have either attnums or
+			 * expressions extracted from it), and was not estimated yet.
+			 */
+
+			/* record simple clauses (single column or expression) */
+			if ((list_attnums[listidx] == NULL &&
+				 list_length(list_exprs[listidx]) == 1) ||
+				(list_exprs[listidx] == NIL &&
+				 bms_membership(list_attnums[listidx]) == BMS_SINGLETON))
+				simple_clauses = bms_add_member(simple_clauses,
+												list_length(stat_clauses));
+
+			/* add clause to list and mark it as estimated */
+			stat_clauses = lappend(stat_clauses, (Node *) lfirst(l));
+			*estimatedclauses = bms_add_member(*estimatedclauses, listidx);
+
+			/*
+			 * Reset the pointers, so that choose_best_statistics knows this
+			 * clause was estimated and does not consider it again.
+			 */
+			bms_free(list_attnums[listidx]);
+			list_attnums[listidx] = NULL;
+
+			list_free(list_exprs[listidx]);
+			list_exprs[listidx] = NULL;
+		}
+
+		if (is_or)
+		{
+			Selectivity	stat_sel;
+
+			stat_sel = sample_clauselist_selectivity(root, stat, sample, stat_clauses,
+													 varRelid, jointype, sjinfo,
+													 rel, true);
+
+			/*
+			 * Factor the result for this statistics object into the overall
+			 * result.  We treat the results from each separate statistics
+			 * object as independent of one another.
+			 */
+			sel = sel + stat_sel - sel * stat_sel;
+		}
+		else					/* Implicitly-ANDed list of clauses */
+		{
+			/*
+			 * Multi-column estimate using the sample. Just facto it right
+			 * into the result.
+			 */
+			sel *= sample_clauselist_selectivity(root, stat, sample, stat_clauses,
+												 varRelid, jointype, sjinfo,
+												 rel, false);
+		}
+	}
+
+	return sel;
+}
+
 /*
  * statext_mcv_clauselist_selectivity
  *		Estimate clauses using the best multi-column statistics.
@@ -1979,17 +2389,30 @@ statext_clauselist_selectivity(PlannerInfo *root, List *clauses, int varRelid,
 							   bool is_or)
 {
 	Selectivity sel;
+	Selectivity sel2;
 
-	/* First, try estimating clauses using a multivariate MCV list. */
-	sel = statext_mcv_clauselist_selectivity(root, clauses, varRelid, jointype,
+	/* First, try estimating clauses using a multivariate sample. */
+	sel = statext_sample_clauselist_selectivity(root, clauses, varRelid, jointype,
+												sjinfo, rel, estimatedclauses, is_or);
+
+	/* Then try estimating the remaining clauses using a multivariate MCV list. */
+	sel2 = statext_mcv_clauselist_selectivity(root, clauses, varRelid, jointype,
 											 sjinfo, rel, estimatedclauses, is_or);
 
 	/*
 	 * Functional dependencies only work for clauses connected by AND, so for
 	 * OR clauses we're done.
+	 *
+	 * If it's OR, combine them using the usual (s1 + s2 - s1 * s2).
 	 */
 	if (is_or)
-		return sel;
+		return (sel + sel2 - sel * sel2);
+
+	/*
+	 * Otherwise continue with functional dependencies, but first combine the results
+	 * using the usual product formula (assuming independence).
+	 */
+	sel *= sel2;
 
 	/*
 	 * Then, apply functional dependencies on the remaining clauses by calling
@@ -2611,3 +3034,1821 @@ make_build_data(Relation rel, StatExtEntry *stat, int numrows, HeapTuple *rows,
 
 	return result;
 }
+
+/*
+ * sample_alloc
+ *		allocate a sample with space for maxrows (we'll resize if needed)
+ */
+static Sample *
+sample_alloc(Bitmapset *attrs, List *exprs, int maxrows)
+{
+	Sample *sample;
+	int		nattributes = bms_num_members(attrs) + list_length(exprs);
+
+	/* basic struct */
+	sample = palloc0(sizeof(Sample));
+
+	/* XXX should we copy this? */
+	sample->attnums = attrs;
+	sample->exprs = exprs;
+	sample->maxrows = maxrows;
+
+	sample->values = palloc(sizeof(Datum) * nattributes * maxrows);
+	sample->isnull = palloc(sizeof(bool) * nattributes * maxrows);
+
+	return sample;
+}
+
+/*
+ * sample_free
+ *		free the row sample
+ */
+static void
+sample_free(Sample *sample)
+{
+	/* XXX maybe free the attnums / exprs */
+	pfree(sample->values);
+	pfree(sample->isnull);
+	pfree(sample);
+}
+
+/*
+ * sample_add_tuple
+ *		add tuple to the random sample, resize if needed
+ *
+ * We extract the attnums from the heap tuples, and keep simple array of Datum
+ * values and bool isnull flags.
+ */
+static void
+sample_add_tuple(Sample *sample, TupleDesc tdesc, HeapTuple htup)
+{
+	int	attno;
+	int	nattrs = bms_num_members(sample->attnums) + list_length(sample->exprs);
+
+	int	idx = sample->nrows * nattrs;
+
+	if (sample->maxrows == sample->nrows)
+	{
+		sample->maxrows *= 2;
+		sample->values = repalloc(sample->values, sample->maxrows * nattrs * sizeof(Datum));
+		sample->isnull = repalloc(sample->isnull, sample->maxrows * nattrs * sizeof(bool));
+	}
+
+	for (attno = 1; attno <= nattrs; attno++)
+	{
+		if (!htup)
+		{
+			/* if no tuple, treat it as all NULL values (won't match any conditions) */
+			sample->values[idx] = (Datum) 0;
+			sample->isnull[idx] = true;
+		}
+		else
+			sample->values[idx] = heap_getattr(htup, attno, tdesc,
+											   &sample->isnull[idx]);
+		idx++;
+	}
+
+	sample->nrows++;
+}
+
+/*
+ * sample_calculate_size
+ *		calculate the sampling rate for tablesample
+ *
+ * We look at statistics target for the statistics object, or the default one if
+ * not set, and we use that as a fraction for tablesample. We also combine that
+ * with estimate_sample_rate GUC.
+ *
+ * XXX Maybe we should look at per-attribute targets too.
+ */
+static double
+sample_calculate_size(StatisticExtInfo *stat, double ntuples, double *nrows)
+{
+	int			stattarget;
+	HeapTuple	htup;
+	Datum		datum;
+	bool		isnull;
+	double		sample_rate;
+
+	/* determine stattarget, if any */
+	htup = SearchSysCache1(STATEXTOID, ObjectIdGetDatum(stat->statOid));
+	if (!HeapTupleIsValid(htup))
+		elog(ERROR, "cache lookup failed for statistics object %u", stat->statOid);
+
+	/* Determine which statistics types exist */
+	datum = SysCacheGetAttr(STATEXTOID, htup,
+							Anum_pg_statistic_ext_stxstattarget, &isnull);
+
+	Assert(!isnull);
+
+	stattarget = DatumGetInt32(datum);
+	if (stattarget == -1)
+		stattarget = default_statistics_target;
+
+	ReleaseSysCache(htup);
+
+	*nrows = Min(300.0 * stattarget, ntuples);
+
+	/* use the GUC of stattarget, whatever gives higher sample rate */
+	sample_rate = Max(estimate_sample_rate, *nrows / ntuples);
+
+	*nrows = ntuples * sample_rate;
+
+	return sample_rate;
+}
+
+/*
+ * statext_collect_sample
+ *		build a random sample for the relation
+ *
+ * XXX We sample all attributes and expresions the statistics is defined on, but
+ * we should sample only what's referenced in the query (both as a join clause
+ * and base restrictions).
+ *
+ * XXX This uses the regular TABLESAMPLE through SPI, as that's the simplest way.
+ * Good enough for PoC, but maybe there's a better way to do this.
+ */
+static Sample *
+statext_collect_sample(PlannerInfo *root, StatisticExtInfo *stat)
+{
+	int		ret;
+	int		i, k;
+	uint64	proc;
+	StringInfoData str;
+	bool	first;
+	RangeTblEntry *rte = planner_rt_fetch(stat->rel->relid, root);
+	Oid		relid = rte->relid;
+	ListCell *lc;
+	bool	reset;
+
+	double	sample_rows;
+	double	sample_rate = sample_calculate_size(stat, stat->rel->tuples,
+												&sample_rows);
+
+	Sample *sample = sample_alloc(stat->keys, stat->exprs, sample_rows);
+
+	SPITupleTable  *spi_tuptable;
+	TupleDesc		spi_tupdesc;
+
+	List	   *context;
+	initStringInfo(&str);
+
+	/* internal error */
+	if ((ret = SPI_connect()) < 0)
+		elog(ERROR, "statext_collect_sample: SPI_connect returned %d", ret);
+
+	appendStringInfoString(&str, "SELECT ");
+
+	first = true;
+	k = -1;
+
+	while ((k = bms_next_member(stat->keys, k)) >= 0)
+	{
+		AttrNumber attnum = k;
+
+		if (!first)
+			appendStringInfo(&str, ", ");
+
+		appendStringInfo(&str, "%s", get_attname(relid, attnum, false));
+
+		first = false;
+	}
+
+	context = deparse_context_for(get_rel_name(relid), relid);
+
+	foreach(lc, stat->exprs)
+	{
+		Node   *expr = (Node *) lfirst(lc);
+		char   *expr_str;
+
+		/* tweak the varno */
+		if (stat->rel->relid != 1)
+		{
+			expr = copyObject(expr);
+			ChangeVarNodes(expr, stat->rel->relid, 1, 0);
+		}
+
+		expr_str = deparse_expression(expr, context, false, false);
+
+		if (!first)
+			appendStringInfo(&str, ", ");
+
+		appendStringInfo(&str, "%s", expr_str);
+
+		first = false;
+	}
+
+	/*
+	 * XXX Maybe for joins this could also include the additional non-join
+	 * conditions, derived from the baserestrictinfos. That would make the
+	 * sample smaller, and we would not need to bother with evaluating the
+	 * conditions later. Both would make it more efficient. It may make the
+	 * sample less useful for other queries (not an issue for samples built
+	 * at run-time for each query, but if retained it'd be a problem).
+	 */
+	appendStringInfo(&str, " FROM %s.%s TABLESAMPLE BERNOULLI (%f)",
+					 quote_identifier(get_namespace_name(get_rel_namespace(relid))),
+					 quote_identifier(get_rel_name(relid)), 100 * sample_rate);
+
+	/*
+	 * disable sampling for this sampling query
+	 *
+	 * The query is simple enough and should always use the unique index, so
+	 * there's very little risk of poor query plans. Moreover, there might be
+	 * a risk of infinite cycles (having to sample when collecting a sample).
+	 */
+	reset = enable_sample_estimates_scan;
+	enable_sample_estimates_scan = false;
+
+	ret = SPI_execute(str.data, true, 0);
+	proc = SPI_processed;
+
+	/* If no qualifying tuples, fall out early */
+	if (ret != SPI_OK_SELECT || proc == 0)
+	{
+		SPI_finish();
+		return NULL;
+	}
+
+	spi_tuptable = SPI_tuptable;
+	spi_tupdesc = spi_tuptable->tupdesc;
+
+	for (i = 0; i < proc; i++)
+		sample_add_tuple(sample, spi_tupdesc, spi_tuptable->vals[i]);
+
+	elog(WARNING, "statext_collect_sample: sampled %ld rows", proc);
+
+	SPI_finish();
+
+	enable_sample_estimates_scan = reset;
+
+	return sample;
+}
+
+/*
+ * statext_collect_correlated_sample
+ *		build a correlated random sample for the relation
+ *
+ * Given an existing sample on A, find matching rows in relation B. This requires
+ * a primary key on B, but could be relaxed to a unique index or even any index.
+ * With non-unique indexes we may need to sample the rows somehow.
+ *
+ * This works best for cases with star/snowflake schema. It's inspired by papers
+ *
+ * Cardinality Estimation Done Right: Index-Based Join Sampling - Viktor Leis and
+ *   B. Radke and Andrey Gubichev and A. Kemper and Thomas Neumann, CIDR 2017
+ *
+ * CS2: A New Database Synopsis for Query Estimation - Feng Yu, Southern Illinois
+ *   University; Wen-Chi Hou, Southern Illinois University; Cheng    Luo, Coppin
+ *   State University; Dunren Che, Southern Illinois University; Mengxia Zhu,
+ *   Southern Illinois University
+ *
+ * XXX The optimizer already uses the foreign key info to improve estimates, but
+ * that does not consider cross-table correlations or additional conditions on
+ * the tables. So this should probably take precedence, before considering the
+ * foreign keys.
+ */
+static Sample *
+statext_collect_correlated_sample(PlannerInfo *root, StatisticExtInfo *stat,
+								  StatisticExtInfo *stat2, Sample *sample2, List *clauses)
+{
+	int		ret;
+	int		i, k;
+	uint64	proc;
+	StringInfoData str;
+	bool	first;
+	RangeTblEntry *rte = planner_rt_fetch(stat->rel->relid, root);
+	Oid		relid = rte->relid;
+	ListCell *lc;
+
+	/*
+	 * Use the same number of rows as the source sample (we'll lookup by
+	 * primary key).
+	 */
+	Sample *sample = sample_alloc(stat->keys, stat->exprs, sample2->nrows);
+
+	SPIPlanPtr		pplan;
+	SPITupleTable  *spi_tuptable;
+	TupleDesc		spi_tupdesc;
+
+	List	   *context;
+
+	initStringInfo(&str);
+
+	appendStringInfoString(&str, "SELECT ");
+
+	first = true;
+	k = -1;
+
+	while ((k = bms_next_member(stat->keys, k)) >= 0)
+	{
+		AttrNumber attnum = k;
+
+		if (!first)
+			appendStringInfo(&str, ", ");
+
+		appendStringInfo(&str, "%s", get_attname(relid, attnum, false));
+
+		first = false;
+	}
+
+	context = deparse_context_for(get_rel_name(relid), relid);
+
+	foreach(lc, stat->exprs)
+	{
+		Node   *expr = (Node *) lfirst(lc);
+		char   *expr_str;
+
+		/* tweak the varno */
+		if (stat->rel->relid != 1)
+		{
+			expr = copyObject(expr);
+			ChangeVarNodes(expr, stat->rel->relid, 1, 0);
+		}
+
+		expr_str = deparse_expression(expr, context, false, false);
+
+		if (!first)
+			appendStringInfo(&str, ", ");
+
+		appendStringInfo(&str, "%s", expr_str);
+
+		first = false;
+	}
+
+	appendStringInfo(&str, " FROM %s.%s",
+					 quote_identifier(get_namespace_name(get_rel_namespace(relid))),
+					 quote_identifier(get_rel_name(relid)));
+
+	/*
+	 * Extract information from the join conditions - which attributes to add to
+	 * the SQL query, which values to use from the existing sample, etc.
+	*/
+	{
+		ListCell *lc;
+		int j;
+
+		int			idx = 0;
+		int			natts = list_length(clauses);
+		AttrNumber *attnums1 = (AttrNumber *) palloc(sizeof(AttrNumber) * natts);
+		AttrNumber *attnums2 = (AttrNumber *) palloc(sizeof(AttrNumber) * natts);
+		Oid		   *atttypes = (Oid *) palloc(sizeof(Oid) * natts);
+		int		   *attmap = (int *) palloc(sizeof(int) * natts);
+		bool		reset;
+
+		Datum  *values = palloc(sizeof(Datum) * natts);
+		char   *nulls = palloc(sizeof(char) * natts);
+
+		/* expects trivial */
+		foreach (lc, clauses)
+		{
+			Node *clause = (Node *) lfirst(lc);
+			Bitmapset *attnums = NULL;
+
+			pull_varattnos(clause, stat->rel->relid, &attnums);
+
+			attnums1[idx] = bms_singleton_member(attnums) + FirstLowInvalidHeapAttributeNumber;
+
+			bms_free(attnums);
+			attnums = NULL;
+
+			pull_varattnos(clause, stat2->rel->relid, &attnums);
+
+			attnums2[idx] = bms_singleton_member(attnums) + FirstLowInvalidHeapAttributeNumber;
+
+			bms_free(attnums);
+			attnums = NULL;
+
+			atttypes[idx] = get_atttype(relid, attnums1[idx]);
+
+			/* which index in the other sample */
+			attmap[idx] = bms_member_index(stat2->keys, attnums2[idx]);
+
+			idx++;
+		}
+
+		Assert(idx == natts);
+
+		appendStringInfoString(&str, " WHERE ");
+
+		for (i = 0; i < natts; i++)
+		{
+			if (i > 0)
+				appendStringInfoString(&str, " AND ");
+
+			appendStringInfo(&str, " %s = $%d ", get_attname(relid, attnums1[i], false), (i+1));
+		}
+
+		/*
+		 * XXX Maybe for joins this could also include the additional non-join
+		 * conditions, derived from the baserestrictinfos. That would make the
+		 * sample smaller, and we would not need to bother with evaluating the
+		 * conditions later. Both would make it more efficient. It may make the
+		 * sample less useful for other queries (not an issue for samples built
+		 * at run-time for each query, but if retained it'd be a problem).
+		 */
+
+		elog(WARNING, "SQL: %s", str.data);
+
+		/* internal error */
+		if ((ret = SPI_connect()) < 0)
+			elog(ERROR, "statext_collect_sample: SPI_connect returned %d", ret);
+
+		/*
+		 * disable sampling for this sampling query
+		 *
+		 * The query is simple enough and should always use the unique index, so
+		 * there's very little risk of poor query plans. Moreover, there might be
+		 * a risk of infinite cycles (having to sample when collecting a sample).
+		 */
+		reset = enable_sample_estimates_scan;
+		enable_sample_estimates_scan = false;
+
+		/* prepare the lookup statement */
+		pplan = SPI_prepare(str.data, natts, atttypes);
+
+		/*
+		 * Lookup the values for all rows in the existing sample.
+		 *
+		 * XXX We might sort te sample2 so that it's easy to identify values
+		 * that are equal, and skip the index lookup in that case.
+		 */
+		for (j = 0; j < sample2->nrows; j++)
+		{
+			int	ret;
+			int	natts2 = bms_num_members(stat2->keys) + list_length(stat2->exprs);
+
+			/* build parameters for the prepared statement */
+			for (i = 0; i < natts; i++)
+			{
+				int	idx = j * natts2 + attmap[i];
+
+				values[i] = sample2->values[idx];
+
+				if (sample2->isnull[idx])
+					nulls[i] = 'n';
+				else
+					nulls[i] = ' ';
+			}
+
+			/* run the prepared statement */
+			ret = SPI_execp(pplan, values, nulls, natts);
+			proc = SPI_processed;
+
+			/* results of the lookup */
+			spi_tuptable = SPI_tuptable;
+			spi_tupdesc = spi_tuptable->tupdesc;
+
+			/*
+			 * We could relax this to work with any indexes, in which case this
+			 * will fail (and we'll need to sample the returned rows somehow).
+			 */
+			Assert(proc <= 1);
+
+			/* If no qualifying tuples, add "empty" tuple */
+			if (ret != SPI_OK_SELECT || proc == 0)
+				sample_add_tuple(sample, spi_tupdesc, NULL);
+			else
+				sample_add_tuple(sample, spi_tupdesc, spi_tuptable->vals[0]);
+
+			SPI_freetuptable(spi_tuptable);
+		}
+
+		/* restore the value */
+		enable_sample_estimates_scan = reset;
+	}
+
+	SPI_finish();
+
+	SPI_freeplan(pplan);
+
+	elog(WARNING, "statext_collect_correlated_sample: sampled %d rows", sample->nrows);
+
+	return sample;
+}
+
+/*
+ * match the attribute/expression to a dimension of the statistic
+ *
+ * Match the attribute/expression to statistics dimension. Optionally
+ * determine the collation.
+ */
+static int
+sample_match_expression(Node *expr, Bitmapset *keys, List *exprs, Oid *collid)
+{
+	int			idx = -1;
+
+	if (IsA(expr, Var))
+	{
+		/* simple Var, so just lookup using varattno */
+		Var		   *var = (Var *) expr;
+
+		if (collid)
+			*collid = var->varcollid;
+
+		idx = bms_member_index(keys, var->varattno);
+
+		/* make sure the index is valid */
+		Assert((idx >= 0) && (idx <= bms_num_members(keys)));
+	}
+	else
+	{
+		ListCell   *lc;
+
+		/* expressions are stored after the simple columns */
+		idx = bms_num_members(keys);
+
+		if (collid)
+			*collid = exprCollation(expr);
+
+		/* expression - lookup in stats expressions */
+		foreach(lc, exprs)
+		{
+			Node	   *stat_expr = (Node *) lfirst(lc);
+
+			if (equal(expr, stat_expr))
+				break;
+
+			idx++;
+		}
+
+		/* make sure the index is valid */
+		Assert((idx >= bms_num_members(keys)) &&
+			   (idx <= bms_num_members(keys) + list_length(exprs)));
+	}
+
+	Assert((idx >= 0) && (idx < bms_num_members(keys) + list_length(exprs)));
+
+	return idx;
+}
+
+#define RESULT_MERGE(value, is_or, match) \
+	((is_or) ? ((value) || (match)) : ((value) && (match)))
+
+#define RESULT_IS_FINAL(value, is_or)	((is_or) ? (value) : (!(value)))
+
+static bool *
+sample_get_match_bitmap(PlannerInfo *root, List *clauses,
+						Bitmapset *keys, List *exprs,
+						Sample *sample, bool is_or)
+{
+	ListCell *l;
+	bool   *matches = palloc(sample->nrows * sizeof(bool));
+	int		nattrs = bms_num_members(keys) + list_length(exprs);
+
+	memset(matches, (is_or) ? false : true,
+		   sizeof(bool) * sample->nrows);
+
+	/*
+	 * Loop through the list of clauses, and for each of them evaluate all
+	 * the sampled rows not yet eliminated by the preceding clauses.
+	 */
+	foreach(l, clauses)
+	{
+		Node	   *clause = (Node *) lfirst(l);
+
+		/* if it's a RestrictInfo, then extract the clause */
+		if (IsA(clause, RestrictInfo))
+			clause = (Node *) ((RestrictInfo *) clause)->clause;
+
+		/*
+		 * Handle the various types of clauses - OpClause, NullTest and
+		 * AND/OR/NOT
+		 */
+		if (is_opclause(clause))
+		{
+			OpExpr	   *expr = (OpExpr *) clause;
+			FmgrInfo	opproc;
+
+			/* valid only after examine_opclause_args returns true */
+			Node	   *clause_expr;
+			Const	   *cst;
+			bool		expronleft;
+			int			idx;
+			Oid			collid;
+			int			i;
+
+			fmgr_info(get_opcode(expr->opno), &opproc);
+
+			/* extract the var/expr and const from the expression */
+			if (!examine_opclause_args(expr->args, &clause_expr, &cst, &expronleft))
+				elog(ERROR, "incompatible clause");
+
+			/* match the attribute/expression to a dimension of the statistic */
+			idx = sample_match_expression(clause_expr, keys, exprs, &collid);
+
+			Assert((idx >= 0) && (idx < bms_num_members(keys) + list_length(exprs)));
+
+			/*
+			 * Walk through the sampled rows and evaluate the current clause. We
+			 * can skip items that were already ruled out, and terminate if
+			 * there are no remaining MCV items that might possibly match.
+			 */
+			for (i = 0; i < sample->nrows; i++)
+			{
+				bool		match = true;
+				Datum	   *values = &sample->values[i * nattrs];
+				bool	   *isnull = &sample->isnull[i * nattrs];
+
+				Assert(idx >= 0);
+
+				/*
+				 * When the sampled row or the Const value is NULL we can treat
+				 * this as a mismatch. We must not call the operator because
+				 * of strictness.
+				 */
+				if (isnull[idx] || cst->constisnull)
+				{
+					matches[i] = RESULT_MERGE(matches[i], is_or, false);
+					continue;
+				}
+
+				/*
+				 * Skip sampled rows that can't change result in the bitmap. Once
+				 * the value gets false for AND-lists, or true for OR-lists, we
+				 * don't need to look at more clauses.
+				 */
+				if (RESULT_IS_FINAL(matches[i], is_or))
+					continue;
+
+				/*
+				 * First check whether the constant is below the lower
+				 * boundary (in that case we can skip the bucket, because
+				 * there's no overlap).
+				 *
+				 * We don't store collations used to build the statistics, but
+				 * we can use the collation for the attribute itself, as
+				 * stored in varcollid. We do reset the statistics after a
+				 * type change (including collation change), so this is OK.
+				 * For expressions, we use the collation extracted from the
+				 * expression itself.
+				 */
+				if (expronleft)
+					match = DatumGetBool(FunctionCall2Coll(&opproc,
+														   collid,
+														   values[idx],
+														   cst->constvalue));
+				else
+					match = DatumGetBool(FunctionCall2Coll(&opproc,
+														   collid,
+														   cst->constvalue,
+														   values[idx]));
+
+				/* update the match bitmap with the result */
+				matches[i] = RESULT_MERGE(matches[i], is_or, match);
+			}
+		}
+		else if (IsA(clause, ScalarArrayOpExpr))
+		{
+			ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) clause;
+			FmgrInfo	opproc;
+
+			/* valid only after examine_opclause_args returns true */
+			Node	   *clause_expr;
+			Const	   *cst;
+			bool		expronleft;
+			Oid			collid;
+			int			idx,
+						i;
+
+			/* array evaluation */
+			ArrayType  *arrayval;
+			int16		elmlen;
+			bool		elmbyval;
+			char		elmalign;
+			int			num_elems;
+			Datum	   *elem_values;
+			bool	   *elem_nulls;
+
+			fmgr_info(get_opcode(expr->opno), &opproc);
+
+			/* extract the var/expr and const from the expression */
+			if (!examine_opclause_args(expr->args, &clause_expr, &cst, &expronleft))
+				elog(ERROR, "incompatible clause");
+
+			/* ScalarArrayOpExpr has the Var always on the left */
+			Assert(expronleft);
+
+			/* XXX what if (cst->constisnull == NULL)? */
+			if (!cst->constisnull)
+			{
+				arrayval = DatumGetArrayTypeP(cst->constvalue);
+				get_typlenbyvalalign(ARR_ELEMTYPE(arrayval),
+									 &elmlen, &elmbyval, &elmalign);
+				deconstruct_array(arrayval,
+								  ARR_ELEMTYPE(arrayval),
+								  elmlen, elmbyval, elmalign,
+								  &elem_values, &elem_nulls, &num_elems);
+			}
+
+			/* match the attribute/expression to a dimension of the statistic */
+			idx = sample_match_expression(clause_expr, keys, exprs, &collid);
+
+			/*
+			 * Walk through the sample and evaluate the current clause. We
+			 * can skip items that were already ruled out, and terminate if
+			 * there are no remaining MCV items that might possibly match.
+			 */
+			for (i = 0; i < sample->nrows; i++)
+			{
+				int			j;
+				bool		match = (expr->useOr ? false : true);
+				Datum	   *values = &sample->values[i * nattrs];
+				bool	   *isnull = &sample->isnull[i * nattrs];
+
+				/*
+				 * When the MCV item or the Const value is NULL we can treat
+				 * this as a mismatch. We must not call the operator because
+				 * of strictness.
+				 */
+				if (isnull[idx] || cst->constisnull)
+				{
+					matches[i] = RESULT_MERGE(matches[i], is_or, false);
+					continue;
+				}
+
+				/*
+				 * Skip MCV items that can't change result in the bitmap. Once
+				 * the value gets false for AND-lists, or true for OR-lists,
+				 * we don't need to look at more clauses.
+				 */
+				if (RESULT_IS_FINAL(matches[i], is_or))
+					continue;
+
+				for (j = 0; j < num_elems; j++)
+				{
+					Datum		elem_value = elem_values[j];
+					bool		elem_isnull = elem_nulls[j];
+					bool		elem_match;
+
+					/* NULL values always evaluate as not matching. */
+					if (elem_isnull)
+					{
+						match = RESULT_MERGE(match, expr->useOr, false);
+						continue;
+					}
+
+					/*
+					 * Stop evaluating the array elements once we reach a
+					 * matching value that can't change - ALL() is the same as
+					 * AND-list, ANY() is the same as OR-list.
+					 */
+					if (RESULT_IS_FINAL(match, expr->useOr))
+						break;
+
+					elem_match = DatumGetBool(FunctionCall2Coll(&opproc,
+																collid,
+																values[idx],
+																elem_value));
+
+					match = RESULT_MERGE(match, expr->useOr, elem_match);
+				}
+
+				/* update the match bitmap with the result */
+				matches[i] = RESULT_MERGE(matches[i], is_or, match);
+			}
+		}
+		else if (IsA(clause, NullTest))
+		{
+			int			i;
+			NullTest   *expr = (NullTest *) clause;
+			Node	   *clause_expr = (Node *) (expr->arg);
+
+			/* match the attribute/expression to a dimension of the statistic */
+			int			idx = sample_match_expression(clause_expr, keys, exprs, NULL);
+
+			/*
+			 * Walk through the sample and evaluate the current clause. We
+			 * can skip items that were already ruled out, and terminate if
+			 * there are no remaining MCV items that might possibly match.
+			 */
+			for (i = 0; i < sample->nrows; i++)
+			{
+				bool	match = false;	/* assume mismatch */
+				bool   *isnull = &sample->isnull[i * nattrs];
+
+
+				/* if the clause mismatches the MCV item, update the bitmap */
+				switch (expr->nulltesttype)
+				{
+					case IS_NULL:
+						match = (isnull[idx]) ? true : match;
+						break;
+
+					case IS_NOT_NULL:
+						match = (!isnull[idx]) ? true : match;
+						break;
+				}
+
+				/* now, update the match bitmap, depending on OR/AND type */
+				matches[i] = RESULT_MERGE(matches[i], is_or, match);
+			}
+		}
+		else if (is_orclause(clause) || is_andclause(clause))
+		{
+			/* AND/OR clause, with all subclauses being compatible */
+
+			int			i;
+			BoolExpr   *bool_clause = ((BoolExpr *) clause);
+			List	   *bool_clauses = bool_clause->args;
+
+			/* match/mismatch bitmap for each MCV item */
+			bool	   *bool_matches = NULL;
+
+			Assert(bool_clauses != NIL);
+			Assert(list_length(bool_clauses) >= 2);
+
+			/* build the match bitmap for the OR-clauses */
+			bool_matches = sample_get_match_bitmap(root, bool_clauses, keys, exprs,
+												   sample, is_orclause(clause));
+
+			/*
+			 * Merge the bitmap produced by mcv_get_match_bitmap into the
+			 * current one. We need to consider if we're evaluating AND or OR
+			 * condition when merging the results.
+			 */
+			for (i = 0; i < sample->nrows; i++)
+				matches[i] = RESULT_MERGE(matches[i], is_or, bool_matches[i]);
+
+			pfree(bool_matches);
+		}
+		else if (is_notclause(clause))
+		{
+			/* NOT clause, with all subclauses compatible */
+
+			int			i;
+			BoolExpr   *not_clause = ((BoolExpr *) clause);
+			List	   *not_args = not_clause->args;
+
+			/* match/mismatch bitmap for each MCV item */
+			bool	   *not_matches = NULL;
+
+			Assert(not_args != NIL);
+			Assert(list_length(not_args) == 1);
+
+			/* build the match bitmap for the NOT-clause */
+			not_matches = sample_get_match_bitmap(root, not_args, keys, exprs,
+												  sample, false);
+
+			/*
+			 * Merge the bitmap produced by mcv_get_match_bitmap into the
+			 * current one. We're handling a NOT clause, so invert the result
+			 * before merging it into the global bitmap.
+			 */
+			for (i = 0; i < sample->nrows; i++)
+				matches[i] = RESULT_MERGE(matches[i], is_or, !not_matches[i]);
+
+			pfree(not_matches);
+		}
+		else if (IsA(clause, Var))
+		{
+			/* Var (has to be a boolean Var, possibly from below NOT) */
+			Var		   *var = (Var *) (clause);
+			int			i;
+
+			/* match the attribute to a dimension of the statistic */
+			int			idx = bms_member_index(keys, var->varattno);
+
+			Assert(var->vartype == BOOLOID);
+
+			/*
+			 * Walk through the MCV items and evaluate the current clause. We
+			 * can skip items that were already ruled out, and terminate if
+			 * there are no remaining MCV items that might possibly match.
+			 */
+			for (i = 0; i < sample->nrows; i++)
+			{
+				Datum	   *values = &sample->values[i * nattrs];
+				bool	   *isnull = &sample->isnull[i * nattrs];
+				bool		match = false;
+
+				/* if the item is NULL, it's a mismatch */
+				if (!isnull[idx] && DatumGetBool(values[idx]))
+					match = true;
+
+				/* update the result bitmap */
+				matches[i] = RESULT_MERGE(matches[i], is_or, match);
+			}
+		}
+		else
+			elog(ERROR, "unknown clause type: %d", clause->type);
+	}
+
+	return matches;
+}
+
+static Selectivity
+sample_clauselist_selectivity(PlannerInfo *root, StatisticExtInfo *stat,
+							  Sample *sample, List *clauses, int varRelid,
+							  JoinType jointype, SpecialJoinInfo *sjinfo,
+							  RelOptInfo *rel, bool is_or)
+{
+	int			i;
+	int			matched;
+
+	/* match/mismatch bitmap for each sampled row */
+	bool	   *matches = NULL;
+
+	/* build a match bitmap for the clauses */
+	matches = sample_get_match_bitmap(root, clauses,
+									  sample->attnums, sample->exprs,
+									  sample, is_or);
+
+	/* sum frequencies for all the matching sampled rows */
+	matched = 0;
+	for (i = 0; i < sample->nrows; i++)
+	{
+		if (matches[i] != false)
+			matched++;
+	}
+
+	return matched / (double) sample->nrows;
+}
+
+/*
+ * statext_sample_get_conditions
+ *		Get conditions on base relations, to be used as conditions for joins.
+ *
+ * When estimating joins using extended statistics, we can apply conditions
+ * from base relations as conditions. This peeks at the baserestrictinfo
+ * list for a relation and extracts those that are compatible with extended
+ * statistics.
+ *
+ * XXX Requiring statext_is_compatible_clause for samples is a bit bogus, as
+ * samples can be used to estimate almost any expression. So we should relax
+ * this in the future, probably.
+ */
+static List *
+statext_sample_get_conditions(PlannerInfo *root, RelOptInfo *rel,
+						   StatisticExtInfo *info)
+{
+	ListCell   *lc;
+	List	   *conditions = NIL;
+
+	/* extract conditions that may be applied to the MCV list */
+	foreach (lc, rel->baserestrictinfo)
+	{
+		RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
+		Bitmapset *indexes = NULL;
+		Bitmapset *attnums = NULL;
+		List *exprs = NIL;
+
+		/* clause has to be supported by sample in general */
+		if (!statext_is_compatible_clause(root, (Node *) rinfo, rel->relid,
+										  &attnums, &exprs))
+			continue;
+
+		/*
+		 * clause is compatible in general, but is it actually covered
+		 * by this partiular statistics object?
+		 */
+		if (!bms_is_subset(attnums, info->keys) ||
+			!stat_covers_expressions(info, exprs, &indexes))
+			continue;
+
+		conditions = lappend(conditions, rinfo->clause);
+	}
+
+	return conditions;
+}
+
+/*
+ * statext_mcv_eval_conditions
+ *		Evaluate a list of conditions on the sample.
+ *
+ * This returns a match bitmap for the conditions, which can be used later
+ * to restrict just the "interesting" part of the sample. Also returns
+ * the selectivity of the conditions, or 1.0 if there are no conditions.
+ */
+static bool *
+statext_sample_eval_conditions(PlannerInfo *root, RelOptInfo *rel,
+							   StatisticExtInfo *stat, Sample *sample,
+							   Selectivity *sel)
+{
+	List   *conditions;
+
+	/* everything matches by default */
+	*sel = 1.0;
+
+	/*
+	 * XXX We've already evaluated this before, when picking the statistics
+	 * object. Maybe we should stash it somewhere, so that we don't have to
+	 * evaluate it again.
+	 */
+	conditions = statext_sample_get_conditions(root, rel, stat);
+
+	/* If no conditions, we're done. */
+	if (!conditions)
+		return NULL;
+
+	/* what's the selectivity of the conditions alone? */
+	*sel = clauselist_selectivity(root, conditions, rel->relid, 0, NULL);
+
+	return sample_get_match_bitmap(root, conditions, stat->keys, stat->exprs,
+								   sample, false);
+}
+
+static bool
+statext_can_use_correlated_sample(PlannerInfo *root, RelOptInfo *rel, List *clauses)
+{
+	RangeTblEntry *rte = planner_rt_fetch(rel->relid, root);
+	Oid		relid = rte->relid;
+	Oid		constraintOid;
+	Bitmapset *pkattnos = NULL;
+	Bitmapset *attnos = NULL;
+
+	pkattnos = get_primary_key_attnos(relid, true, &constraintOid);
+
+	if (!OidIsValid(constraintOid))
+		return false;
+
+	pull_varattnos((Node *) clauses, rel->relid, &attnos);
+
+	if (!bms_equal(attnos, pkattnos))
+		return false;
+
+	return true;
+}
+
+/*
+ * statext_compare_samples
+ *		Calculte join selectivity using extended statistics, similarly to
+ *		eqjoinsel_inner.
+ *
+ * Considers restrictions on base relations too, essentially computing
+ * a conditional probability
+ *
+ *	P(join clauses | baserestrictinfos on either side)
+ *
+ * Compared to eqjoinsel_inner there's a couple problems. With per-column
+ * MCV lists it's obvious that the number of distinct values not covered
+ * by the MCV is (ndistinct - size(MCV)). With multi-column MCVs it's not
+ * that simple, particularly when the conditions are on a subset of the
+ * MCV and NULLs are involved. E.g. with MCV (a,b,c) and conditions on
+ * (a,b), it's not clear if the number of (a,b) combinations not covered
+ * by the MCV is
+ *
+ * (ndistinct(a,b) - ndistinct_mcv(a,b))
+ *
+ * where ndistinct_mcv(a,b) is the number of distinct (a,b) combinations
+ * included in the MCV list. These combinations may be present in the rest
+ * of the data (outside MCV), just with some extra values in "c". So in
+ * principle there may be between
+ *
+ * (ndistinct(a,b) - ndistinct_mcv(a,b)) and ndistinct(a,b)
+ *
+ * distinct values in the rest of the data. So we need to pick something
+ * in between, there's no way to calculate this accurately.
+ */
+static Selectivity
+statext_compare_samples(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2,
+						StatisticExtInfo *stat1, StatisticExtInfo *stat2,
+						List *clauses)
+{
+	Sample *sample1;
+	Sample *sample2;
+	int		i, j;
+	Selectivity s = 0;
+
+	/* items eliminated by conditions (if any) */
+	bool   *conditions1 = NULL,
+		   *conditions2 = NULL;
+
+	double	conditions1_sel = 1.0,
+			conditions2_sel = 1.0;
+
+	bool   *matches1 = NULL,
+		   *matches2 = NULL;
+
+	double	matchfreq1,
+			unmatchfreq1,
+			matchfreq2,
+			unmatchfreq2,
+			freq1,
+			freq2;
+
+	int64	nmatches = 0,
+			nmatches1 = 0,
+			nunmatches1 = 0,
+			nmatches2 = 0,
+			nunmatches2 = 0;
+	int64	total = 0;
+
+	bool	correlated = false;
+
+	/*
+	 * XXX Extract attnums / expressions and sample just those.
+	 *
+	 * XXX The other thing we could do is sampling just the rows
+	 * matching the conditions, which would make the sample a bit
+	 * smaller.
+	 *
+	 * XXX And finally we can do GROUP BY to combine duplicate values,
+	 * which should make the sample yet a bit smaller and cheaper to
+	 * process. It'll be a bit like a large MCV, with each row having a
+	 * frequency. This can be done easily in SPI, however that means the
+	 * query will be dependent on the planner (it'll pick the grouping
+	 * algorithm).
+	 *
+	 * XXX We could also build a count-min sketch instead of the sample.
+	 * We can't restrict the count-min sketch with the conditions, but
+	 * we can apply the conditions *before* the sketch gets built. Not
+	 * sure if that can affect the query plan (e.g. by using index for
+	 * the conditions).
+	 */
+	if (enable_sample_join_correlate &&
+		statext_can_use_correlated_sample(root, rel1, clauses))
+	{
+		sample2 = statext_collect_sample(root, stat2);
+		sample1 = statext_collect_correlated_sample(root, stat1, stat2, sample2, clauses);
+		correlated = true;
+	}
+	else if (enable_sample_join_correlate &&
+			 statext_can_use_correlated_sample(root, rel2, clauses))
+	{
+		sample1 = statext_collect_sample(root, stat1);
+		sample2 = statext_collect_correlated_sample(root, stat2, stat1, sample1, clauses);
+		correlated = true;
+	}
+	else
+	{
+		sample1 = statext_collect_sample(root, stat1);
+		sample2 = statext_collect_sample(root, stat2);
+	}
+
+	/* should only get here with samples on both sides */
+	Assert(sample1 && sample2);
+
+	matches1 = (bool *) palloc0(sizeof(bool) * sample1->nrows);
+	matches2 = (bool *) palloc0(sizeof(bool) * sample2->nrows);
+
+	/* apply baserestrictinfo conditions on the MCV lists */
+
+	conditions1 = statext_sample_eval_conditions(root, rel1, stat1, sample1,
+												 &conditions1_sel);
+
+	conditions2 = statext_sample_eval_conditions(root, rel2, stat2, sample2,
+												 &conditions2_sel);
+
+	/*
+	 * Match items from the two samples.
+	 *
+	 * We don't know if the matches are 1:1 - we may have overlap on only
+	 * a subset of attributes, e.g. (a,b,c) vs. (b,c,d), so there may be
+	 * multiple matches.
+	 */
+	for (i = 0; i < sample1->nrows; i++)
+	{
+		int	start = 0;
+		int	end = sample2->nrows;
+
+		/* skip items eliminated by restrictions on rel1 */
+		if (conditions1 && !conditions1[i])
+			continue;
+
+		CHECK_FOR_INTERRUPTS();
+
+		if (correlated)
+		{
+			start = i;
+			end = i+1;
+		}
+
+		/* find matches in the second MCV list */
+		for (j = start; j < end; j++)
+		{
+			ListCell   *lc;
+			bool		items_match = true;
+
+			/* skip items eliminated by restrictions on rel2 */
+			if (conditions2 && !conditions2[j])
+				continue;
+
+			foreach (lc, clauses)
+			{
+				Node *clause = (Node *) lfirst(lc);
+				Bitmapset  *atts1 = NULL;
+				Bitmapset  *atts2 = NULL;
+				Datum		value1, value2;
+				int			index1, index2;
+				AttrNumber	attnum1;
+				AttrNumber	attnum2;
+				bool		match;
+				int			natts1 = bms_num_members(sample1->attnums) + list_length(sample1->exprs);
+				int			natts2 = bms_num_members(sample2->attnums) + list_length(sample2->exprs);
+
+				FmgrInfo	opproc;
+				OpExpr	   *expr = (OpExpr *) clause;
+
+				Assert(is_opclause(clause));
+
+				fmgr_info(get_opcode(expr->opno), &opproc);
+
+				/* determine the columns in each statistics object */
+
+				/* FIXME make this work with expressions too */
+				pull_varattnos(clause, rel1->relid, &atts1);
+				attnum1 = bms_singleton_member(atts1) + FirstLowInvalidHeapAttributeNumber;
+				index1 = bms_member_index(stat1->keys, attnum1);
+
+				pull_varattnos(clause, rel2->relid, &atts2);
+				attnum2 = bms_singleton_member(atts2) + FirstLowInvalidHeapAttributeNumber;
+				index2 = bms_member_index(stat2->keys, attnum2);
+
+				/* translate attr indexes to index in the sample arrays */
+				index1 = i * natts1 + index1;
+				index2 = j * natts2 + index2;
+
+				bms_free(atts1);
+				bms_free(atts2);
+
+				/* if either value is null, we're done */
+				if (sample1->isnull[index1] || sample2->isnull[index2])
+					match = false;
+				else
+				{
+					value1 = sample1->values[index1];
+					value2 = sample2->values[index2];
+
+					/*
+					 * FIXME Might have issues with order of parameters, but for
+					 * same-type equality that should not matter.
+					 * */
+					match = DatumGetBool(FunctionCall2Coll(&opproc,
+														   InvalidOid,
+														   value1, value2));
+				}
+
+				items_match &= match;
+
+				if (!items_match)
+					break;
+			}
+
+			if (items_match)
+			{
+				matches1[i] = matches2[j] = true;
+				nmatches += 1;
+			}
+		}
+	}
+
+	if (correlated)
+		total = (int64) Min(sample1->nrows, stat1->rel->tuples) * (int64) Min(sample2->nrows, stat2->rel->tuples);
+	else
+		total = (int64) sample1->nrows * (int64) sample2->nrows;
+
+	s = nmatches / (double) total;
+
+	elog(WARNING, "statext_compare_samples nmatches %ld cartesian %ld s %f", nmatches, total, s);
+
+	/*
+	 * XXX The "unmatched" frequencies are probably not needed, as the
+	 * sample should cover the whole data set (unlike a MCV list).
+	 *
+	 * XXX We should however look at the number of distinct groups in
+	 * the matched columns/expressions, which should help us to calculate
+	 * selectivity for the whole cross join. One possible extreme is we
+	 * saw all the distinct values, and that all the groups grow about
+	 * proportionally (and the join as ~square of that). Or maybe there
+	 * are many other distinct groups, in which case the join grows
+	 * slowly (closer to linear).
+	 */
+
+	for (i = 0; i < sample1->nrows; i++)
+	{
+		if (conditions1 && !conditions1[i])
+			continue;
+
+		if (matches1[i])
+			nmatches1++;
+		else
+			nunmatches1++;
+	}
+
+	matchfreq1 = nmatches1 / (double) sample1->nrows;
+	unmatchfreq1 = nunmatches1 / (double) sample1->nrows;
+	freq1 = 1.0;
+
+	for (i = 0; i < sample2->nrows; i++)
+	{
+		if (conditions2 && !conditions2[i])
+			continue;
+
+		if (matches2[i])
+			nmatches2++;
+		else
+			nunmatches2++;
+	}
+
+	matchfreq2 = nmatches2 / (double) sample2->nrows;
+	unmatchfreq2 = nunmatches2 / (double) sample2->nrows;
+	freq2 = 1.0;
+
+	/*
+	 * correction for sample parts eliminated by the conditions
+	 *
+	 * FIXME for "impossible" conditions this does /0, which results in
+	 * NaN and other weird stuff.
+	 */
+	if ((matchfreq1 + unmatchfreq1) > 0 && (matchfreq2 + unmatchfreq2) > 0)
+		s = s * freq1 * freq2 / (matchfreq1 + unmatchfreq1) / (matchfreq2 + unmatchfreq2);
+	else
+		s = 0.0;
+
+	elog(WARNING, "statext_compare_samples corrected %f", s);
+
+	sample_free(sample1);
+	sample_free(sample2);
+
+	return s;
+}
+
+/*
+ * statext_is_supported_join_clause
+ *		Check if a join clause may be estimated using extended stats.
+ *
+ * Determines if this is a join clause of the form (Expr op Expr) which
+ * may be estimated using extended statistics. Each side must reference
+ * just one relation for now.
+ */
+static bool
+statext_is_supported_join_clause(PlannerInfo *root, Node *clause,
+								 int varRelid, SpecialJoinInfo *sjinfo)
+{
+	Oid	oprsel;
+	RestrictInfo   *rinfo;
+	OpExpr		   *opclause;
+	ListCell	   *lc;
+
+	/*
+	 * evaluation as a restriction clause, either at scan node or forced
+	 *
+	 * XXX See treat_as_join_clause.
+	 */
+	if ((varRelid != 0) || (sjinfo == NULL))
+		return false;
+
+	/* XXX Can we rely on always getting RestrictInfo here? */
+	if (!IsA(clause, RestrictInfo))
+		return false;
+
+	/* strip the RestrictInfo */
+	rinfo = (RestrictInfo *) clause;
+	clause = (Node *) rinfo->clause;
+
+	/* is it referencing multiple relations? */
+	if (bms_membership(rinfo->clause_relids) != BMS_MULTIPLE)
+		return false;
+
+	/* we only support simple operator clauses for now */
+	if (!is_opclause(clause))
+		return false;
+
+	opclause = (OpExpr *) clause;
+
+	/* for now we only support estimating equijoins */
+	oprsel = get_oprjoin(opclause->opno);
+
+	if (oprsel != F_EQJOINSEL)
+		return false;
+
+	/*
+	 * Make sure we're not mixing vars from multiple relations on the same
+	 * side, like
+	 *
+	 *   (t1.a + t2.a) = (t1.b + t2.b)
+	 *
+	 * which is still technically an opclause, but we can't match it to
+	 * extended statistics in a simple way.
+	 *
+	 * XXX This also means we require rinfo->clause_relids to have 2 rels.
+	 *
+	 * XXX Also check it's not expression on system attributes, which we
+	 * don't allow in extended statistics.
+	 *
+	 * XXX Although maybe we could allow cases that combine expressions
+	 * from both relations on either side? Like (t1.a + t2.b = t1.c - t2.d)
+	 * or something like that. We could do "cartesian product" of the MCV
+	 * stats and restrict it using this condition.
+	 */
+	foreach (lc, opclause->args)
+	{
+		Bitmapset *varnos = NULL;
+		Node *expr = (Node *) lfirst(lc);
+
+		varnos = pull_varnos(root, expr);
+
+		/*
+		 * No argument should reference more than just one relation.
+		 *
+		 * This effectively means each side references just two relations.
+		 * If there's no relation on one side, it's a Const, and the other
+		 * side has to be either Const or Expr with a single rel. In which
+		 * case it can't be a join clause.
+		 */
+		if (bms_num_members(varnos) > 1)
+			return false;
+
+		/*
+		 * XXX Maybe check that both relations have extended statistics
+		 * (no point in considering the clause as useful without it). But
+		 * we'll do that check later anyway, so keep this cheap.
+		 */
+	}
+
+	return true;
+}
+
+/*
+ * statext_try_join_estimates
+ *		Checks if it's worth considering extended stats on join estimates.
+ *
+ * This is supposed to be a quick/cheap check to decide whether to expend
+ * more effort on applying extended statistics to join clauses.
+ */
+bool
+statext_try_join_estimates(PlannerInfo *root, List *clauses, int varRelid,
+						   JoinType jointype, SpecialJoinInfo *sjinfo,
+						   Bitmapset *estimatedclauses)
+{
+	int			listidx;
+	int			k;
+	ListCell   *lc;
+	Bitmapset  *relids = NULL;
+
+	/*
+	 * XXX Not having these values means treat_as_join_clause returns false,
+	 * so we're not supposed to handle join clauses here. So just bail out.
+	 */
+	if ((varRelid != 0) || (sjinfo == NULL))
+		return false;
+
+	listidx = -1;
+	foreach (lc, clauses)
+	{
+		Node *clause = (Node *) lfirst(lc);
+		RestrictInfo *rinfo;
+		listidx++;
+
+		/* skip estimated clauses */
+		if (bms_is_member(listidx, estimatedclauses))
+			continue;
+
+		/*
+		 * Skip clauses that are not join clauses or that we don't know
+		 * how to handle estimate using extended statistics.
+		 */
+		if (!statext_is_supported_join_clause(root, clause, varRelid, sjinfo))
+			continue;
+
+		/*
+		 * Collect relids from all usable clauses.
+		 *
+		 * XXX We're guaranteed to have RestrictInfo thanks to the checks
+		 * in statext_is_supported_join_clause.
+		 */
+		rinfo = (RestrictInfo *) clause;
+		relids = bms_union(relids, rinfo->clause_relids);
+	}
+
+	/* no join clauses found, don't try applying extended stats */
+	if (bms_num_members(relids) == 0)
+		return false;
+
+	/*
+	 * We expect either 0 or >= 2 relids, a case with 1 relid in join clauses
+	 * should be impossible. And we just ruled out 0, so there are at least 2.
+	 */
+	Assert(bms_num_members(relids) >= 2);
+
+	/*
+	 * Check that at least some of the rels referenced by the clauses have
+	 * extended stats.
+	 *
+	 * XXX Maybe we should check how many rels have stats, and cross-check
+	 * how compatible they are (e.g. that both have MCVs, etc.). Also,
+	 * maybe this should cross-check the exact pairs of rels with a join
+	 * clause between them? OTOH this is supposed to be a cheap check, so
+	 * maybe better leave that for later.
+	 *
+	 * XXX We could also check if there are enough parameters in each rel
+	 * to consider extended stats. If there's just a single attribute, it's
+	 * probably better to use just regular statistics. OTOH we can also
+	 * consider restriction clauses from baserestrictinfo and use them
+	 * to calculate conditional probabilities.
+	 */
+	k = -1;
+	while ((k = bms_next_member(relids, k)) >= 0)
+	{
+		RelOptInfo *rel = find_base_rel(root, k);
+		if (rel->statlist)
+			return true;
+	}
+
+	return false;
+}
+
+/*
+ * Information about a join between two relations. It tracks relations being
+ * joined and the join clauses.
+ */
+typedef struct JoinPairInfo
+{
+	Bitmapset  *rels;
+	List	   *clauses;
+} JoinPairInfo;
+
+/*
+ * statext_build_join_pairs
+ *		Extract pairs of joined rels with join clauses for each pair.
+ *
+ * Walks the remaining (not yet estimated) clauses, and splits them into
+ * lists for each pair of joined relations. Returns NULL if there are no
+ * suitable join pairs that might be estimated using extended stats.
+ *
+ * XXX It's possible there are join clauses, but the clauses are not
+ * supported by the extended stats machinery (we only support opclauses
+ * with F_EQJOINSEL selectivity function at the moment). But for samples
+ * it should be possible to support almost anything, although maybe not
+ * with the efficient correlated sampling.
+ *
+ * XXX This should also order the join pairs in a way that supports the
+ * correlated sampling, so for example in a snowflake join
+ *
+ * F -> D1 -> D2
+ *
+ * we should join F->D1 first, then D1->D2. This way we can enrich the
+ * first sample. For star schema this probably does not matter too much.
+ */
+static JoinPairInfo *
+statext_build_join_pairs(PlannerInfo *root, List *clauses, int varRelid,
+						 JoinType jointype, SpecialJoinInfo *sjinfo,
+						 Bitmapset *estimatedclauses, int *npairs)
+{
+	int				cnt;
+	int				listidx;
+	JoinPairInfo   *info;
+	ListCell	   *lc;
+
+	/*
+	 * Assume each clause is for a different pair of relations (some of them
+	 * might be already estimated, but meh - there shouldn't be too many of
+	 * them and it's cheaper than repalloc.
+	 */
+	info = (JoinPairInfo *) palloc0(sizeof(JoinPairInfo) * list_length(clauses));
+	cnt = 0;
+
+	listidx = -1;
+	foreach(lc, clauses)
+	{
+		int				i;
+		bool			found;
+		Node		   *clause = (Node *) lfirst(lc);
+		RestrictInfo   *rinfo;
+
+		listidx++;
+
+		/* skip already estimated clauses */
+		if (bms_is_member(listidx, estimatedclauses))
+			continue;
+
+		/*
+		 * Make sure the clause is a join clause of a supported shape (at
+		 * the moment we support just (Expr op Expr) clauses with each
+		 * side referencing just a single relation.
+		 */
+		if (!statext_is_supported_join_clause(root, clause, varRelid, sjinfo))
+			continue;
+
+		/* statext_is_supported_join_clause guarantees RestrictInfo */
+		rinfo = (RestrictInfo *) clause;
+		clause = (Node *) rinfo->clause;
+
+		/* search for a matching join pair */
+		found = false;
+		for (i = 0; i < cnt; i++)
+		{
+			if (bms_is_subset(rinfo->clause_relids, info[i].rels))
+			{
+				info[i].clauses = lappend(info[i].clauses, clause);
+				found = true;
+				break;
+			}
+		}
+
+		if (!found)
+		{
+			info[cnt].rels = rinfo->clause_relids;
+			info[cnt].clauses = lappend(info[cnt].clauses, clause);
+			cnt++;
+		}
+	}
+
+	if (cnt == 0)
+		return NULL;
+
+	*npairs = cnt;
+	return info;
+}
+
+/*
+ * extract_relation_info
+ *		Extract information about a relation in a join pair.
+ *
+ * The relation is identified by index (generally 0 or 1), and picks extended
+ * statistics covering matching the join clauses and baserel restrictions.
+ *
+ * XXX Can we have cases with indexes above 1? Probably for clauses mixing
+ * vars from 3 relations, but we're rejecting those.
+ */
+static RelOptInfo *
+extract_relation_info(PlannerInfo *root, JoinPairInfo *info, int index,
+					  StatisticExtInfo **stat)
+{
+	int	k;
+	int	relid;
+	RelOptInfo *rel;
+	ListCell *lc;
+
+	Bitmapset  *attnums = NULL;
+	List	   *exprs = NIL;
+
+	k = -1;
+	while (index >= 0)
+	{
+		k = bms_next_member(info->rels, k);
+		if (k < 0)
+			elog(ERROR, "failed to extract relid");
+
+		relid = k;
+		index--;
+	}
+
+	rel = find_base_rel(root, relid);
+
+	/*
+	 * Walk the clauses for this join pair, and extract expressions about
+	 * the relation identified by index / relid. For simple Vars we extract
+	 * the attnum. Otherwise we keep the whole expression.
+	 */
+	foreach (lc, info->clauses)
+	{
+		ListCell *lc2;
+		Node *clause = (Node *) lfirst(lc);
+		OpExpr *opclause = (OpExpr *) clause;
+
+		/* only opclauses supported for now */
+		Assert(is_opclause(clause));
+
+		foreach (lc2, opclause->args)
+		{
+			Node *arg = (Node *) lfirst(lc2);
+			Bitmapset *varnos = NULL;
+
+			/* plain Var references (boolean Vars or recursive checks) */
+			if (IsA(arg, Var))
+			{
+				Var		   *var = (Var *) arg;
+
+				/* Ignore vars from other relations. */
+				if (var->varno != relid)
+					continue;
+
+				/* we also better ensure the Var is from the current level */
+				if (var->varlevelsup > 0)
+					continue;
+
+				/* Also skip system attributes (we don't allow stats on those). */
+				if (!AttrNumberIsForUserDefinedAttr(var->varattno))
+					elog(ERROR, "unexpected system attribute");
+
+				attnums = bms_add_member(attnums, var->varattno);
+
+				/* Done, process the next argument. */
+				continue;
+			}
+
+			/*
+			 * OK, it's a more complex expression, so check if it matches
+			 * the relid and maybe keep it as a whole. It should be
+			 * compatible because we already checked it when building the
+			 * join pairs.
+			 */
+			varnos = pull_varnos(root, arg);
+
+			if (relid == bms_singleton_member(varnos))
+				exprs = lappend(exprs, arg);
+		}
+	}
+
+	*stat = find_matching_sample(root, rel, attnums, exprs);
+
+	return rel;
+}
+
+/*
+ * statext_clauselist_join_selectivity
+ *		Use extended stats to estimate join clauses.
+ *
+ * XXX In principle, we should not restrict this to cases with multiple
+ * join clauses - we should consider dependencies with conditions at the
+ * base relations, i.e. calculate P(join clause | base restrictions).
+ * But currently that does not happen, because clauselist_selectivity_ext
+ * treats a single clause as a special case (and we don't apply extended
+ * statistics in that case yet).
+ */
+Selectivity
+statext_clauselist_join_selectivity(PlannerInfo *root, List *clauses, int varRelid,
+									JoinType jointype, SpecialJoinInfo *sjinfo,
+									Bitmapset **estimatedclauses)
+{
+	int			i;
+	int			listidx;
+	Selectivity	s = 1.0;
+
+	JoinPairInfo *info;
+	int				ninfo;
+
+	if (!clauses || !enable_sample_estimates_join)
+		return 1.0;
+
+	/* extract pairs of joined relations from the list of clauses */
+	info = statext_build_join_pairs(root, clauses, varRelid, jointype, sjinfo,
+									*estimatedclauses, &ninfo);
+
+	/* no useful join pairs */
+	if (!info)
+		return 1.0;
+
+	/*
+	 * Process the join pairs, try to find a matching MCV on each side.
+	 *
+	 * XXX The basic principle is quite similar to eqjoinsel_inner, i.e.
+	 * we try to find a MCV on both sides of the join, and use it to get
+	 * better join estimate. It's a bit more complicated, because there
+	 * might be multiple MCV lists, we also need ndistinct estimate, and
+	 * there may be interesting baserestrictions too.
+	 *
+	 * XXX At the moment we only handle the case with matching MCVs on
+	 * both sides, but it'd be good to also handle case with just ndistinct
+	 * statistics improving ndistinct estimates.
+	 *
+	 * XXX Perhaps it'd be good to also handle case with one side only
+	 * having "regular" statistics (e.g. MCV), especially in cases with
+	 * no conditions on that side of the join (where we can't use the
+	 * extended MCV to calculate conditional probability).
+	 */
+	for (i = 0; i < ninfo; i++)
+	{
+		RelOptInfo *rel1;
+		RelOptInfo *rel2;
+		StatisticExtInfo *stat1;
+		StatisticExtInfo *stat2;
+
+		ListCell *lc;
+
+		/* extract info about the first relation */
+		rel1 = extract_relation_info(root, &info[i], 0, &stat1);
+
+		/* extract info about the second relation */
+		rel2 = extract_relation_info(root, &info[i], 1, &stat2);
+
+		/* XXX only handling case with MCV on both sides for now */
+		if (!stat1 || !stat2)
+			continue;
+
+		s *= statext_compare_samples(root, rel1, rel2, stat1, stat2, info[i].clauses);
+
+		/*
+		 * Now mark all the clauses for this join pair as estimated.
+		 *
+		 * XXX Maybe track the indexes in JoinPairInfo, so that we can
+		 * simply union the two bitmaps, without the extra matching.
+		 */
+		foreach (lc, info->clauses)
+		{
+			Node *clause = (Node *) lfirst(lc);
+			ListCell *lc2;
+
+			listidx = -1;
+			foreach (lc2, clauses)
+			{
+				Node *clause2 = (Node *) lfirst(lc2);
+				listidx++;
+
+				Assert(IsA(clause2, RestrictInfo));
+
+				clause2 = (Node *) ((RestrictInfo *) clause2)->clause;
+
+				if (equal(clause, clause2))
+				{
+					*estimatedclauses = bms_add_member(*estimatedclauses, listidx);
+					break;
+				}
+			}
+		}
+	}
+
+	return s;
+}
diff --git a/src/backend/utils/adt/ruleutils.c b/src/backend/utils/adt/ruleutils.c
index 039b1d2b951..6a932ea0259 100644
--- a/src/backend/utils/adt/ruleutils.c
+++ b/src/backend/utils/adt/ruleutils.c
@@ -1572,6 +1572,7 @@ pg_get_statisticsobj_worker(Oid statextid, bool columns_only, bool missing_ok)
 	bool		ndistinct_enabled;
 	bool		dependencies_enabled;
 	bool		mcv_enabled;
+	bool		sample_enabled;
 	int			i;
 	List	   *context;
 	ListCell   *lc;
@@ -1643,6 +1644,7 @@ pg_get_statisticsobj_worker(Oid statextid, bool columns_only, bool missing_ok)
 		ndistinct_enabled = false;
 		dependencies_enabled = false;
 		mcv_enabled = false;
+		sample_enabled = false;
 
 		for (i = 0; i < ARR_DIMS(arr)[0]; i++)
 		{
@@ -1652,6 +1654,8 @@ pg_get_statisticsobj_worker(Oid statextid, bool columns_only, bool missing_ok)
 				dependencies_enabled = true;
 			else if (enabled[i] == STATS_EXT_MCV)
 				mcv_enabled = true;
+			else if (enabled[i] == STATS_EXT_SAMPLE)
+				sample_enabled = true;
 
 			/* ignore STATS_EXT_EXPRESSIONS (it's built automatically) */
 		}
@@ -1666,8 +1670,11 @@ pg_get_statisticsobj_worker(Oid statextid, bool columns_only, bool missing_ok)
 		 * But if the statistics is defined on just a single column, it has to
 		 * be an expression statistics. In that case we don't need to specify
 		 * kinds.
+		 *
+		 * XXX This intentionally inverts the sample flag, because we treat it
+		 * differently - it's not enabled by default, just explicitly.
 		 */
-		if ((!ndistinct_enabled || !dependencies_enabled || !mcv_enabled) &&
+		if ((!(ndistinct_enabled && dependencies_enabled && mcv_enabled) || sample_enabled) &&
 			(ncolumns > 1))
 		{
 			bool		gotone = false;
@@ -1687,7 +1694,13 @@ pg_get_statisticsobj_worker(Oid statextid, bool columns_only, bool missing_ok)
 			}
 
 			if (mcv_enabled)
+			{
 				appendStringInfo(&buf, "%smcv", gotone ? ", " : "");
+				gotone = true;
+			}
+
+			if (sample_enabled)
+				appendStringInfo(&buf, "%ssample", gotone ? ", " : "");
 
 			appendStringInfoChar(&buf, ')');
 		}
diff --git a/src/backend/utils/misc/guc.c b/src/backend/utils/misc/guc.c
index 4c94f09c645..70d85216431 100644
--- a/src/backend/utils/misc/guc.c
+++ b/src/backend/utils/misc/guc.c
@@ -140,6 +140,11 @@ extern bool ignore_checksum_failure;
 extern bool ignore_invalid_pages;
 extern bool synchronize_seqscans;
 
+extern bool enable_sample_estimates_scan;
+extern bool enable_sample_estimates_join;
+extern bool enable_sample_join_correlate;
+extern double estimate_sample_rate;
+
 #ifdef TRACE_SYNCSCAN
 extern bool trace_syncscan;
 #endif
@@ -2132,6 +2137,33 @@ static struct config_bool ConfigureNamesBool[] =
 		NULL, NULL, NULL
 	},
 
+	{
+		{"enable_sample_scan_estimates", PGC_USERSET, DEVELOPER_OPTIONS,
+			gettext_noop("Decides whether sampling will be used for cardinality estimates for scans."),
+		},
+		&enable_sample_estimates_scan,
+		true,
+		NULL, NULL, NULL
+	},
+
+	{
+		{"enable_sample_join_estimates", PGC_USERSET, DEVELOPER_OPTIONS,
+			gettext_noop("Decides whether sampling will be used for cardinality estimates for joins."),
+		},
+		&enable_sample_estimates_join,
+		true,
+		NULL, NULL, NULL
+	},
+
+	{
+		{"enable_sample_join_correlate", PGC_USERSET, DEVELOPER_OPTIONS,
+			gettext_noop("Try using correlated samples for joins."),
+		},
+		&enable_sample_join_correlate,
+		true,
+		NULL, NULL, NULL
+	},
+
 	/* End-of-list marker */
 	{
 		{NULL, 0, 0, NULL, NULL}, NULL, false, NULL, NULL, NULL
@@ -3869,6 +3901,16 @@ static struct config_real ConfigureNamesReal[] =
 		NULL, NULL, NULL
 	},
 
+	{
+		{"estimate_sample_rate", PGC_SUSET, DEVELOPER_OPTIONS,
+			gettext_noop("Fraction of table to sample for run-time cardinality estimates"),
+			NULL
+		},
+		&estimate_sample_rate,
+		0.01, 0.0, 1.0,
+		NULL, NULL, NULL
+	},
+
 	/* End-of-list marker */
 	{
 		{NULL, 0, 0, NULL, NULL}, NULL, 0.0, 0.0, 0.0, NULL, NULL, NULL
diff --git a/src/bin/psql/describe.c b/src/bin/psql/describe.c
index 40433e32fa0..63a6ce95b2b 100644
--- a/src/bin/psql/describe.c
+++ b/src/bin/psql/describe.c
@@ -2614,6 +2614,7 @@ describeOneTableDetails(const char *schemaname,
 							  "  'd' = any(stxkind) AS ndist_enabled,\n"
 							  "  'f' = any(stxkind) AS deps_enabled,\n"
 							  "  'm' = any(stxkind) AS mcv_enabled,\n"
+							  "  's' = any(stxkind) AS sample_enabled,\n"
 							  "stxstattarget\n"
 							  "FROM pg_catalog.pg_statistic_ext\n"
 							  "WHERE stxrelid = '%s'\n"
@@ -2636,12 +2637,14 @@ describeOneTableDetails(const char *schemaname,
 					bool		has_ndistinct;
 					bool		has_dependencies;
 					bool		has_mcv;
+					bool		has_sample;
 					bool		has_all;
 					bool		has_some;
 
 					has_ndistinct = (strcmp(PQgetvalue(result, i, 5), "t") == 0);
 					has_dependencies = (strcmp(PQgetvalue(result, i, 6), "t") == 0);
 					has_mcv = (strcmp(PQgetvalue(result, i, 7), "t") == 0);
+					has_sample = (strcmp(PQgetvalue(result, i, 8), "t") == 0);
 
 					printfPQExpBuffer(&buf, "    ");
 
@@ -2658,8 +2661,8 @@ describeOneTableDetails(const char *schemaname,
 					 * single expr) or when all are specified (in which case
 					 * we assume it's expanded by CREATE STATISTICS).
 					 */
-					has_all = (has_ndistinct && has_dependencies && has_mcv);
-					has_some = (has_ndistinct || has_dependencies || has_mcv);
+					has_all = (has_ndistinct && has_dependencies && has_mcv && !has_sample);
+					has_some = (has_ndistinct || has_dependencies || has_mcv || has_sample);
 
 					if (has_some && !has_all)
 					{
@@ -2681,8 +2684,12 @@ describeOneTableDetails(const char *schemaname,
 						if (has_mcv)
 						{
 							appendPQExpBuffer(&buf, "%smcv", gotone ? ", " : "");
+							gotone = true;
 						}
 
+						if (has_sample)
+							appendPQExpBuffer(&buf, "%ssample", gotone ? ", " : "");
+
 						appendPQExpBufferChar(&buf, ')');
 					}
 
@@ -2691,9 +2698,9 @@ describeOneTableDetails(const char *schemaname,
 									  PQgetvalue(result, i, 1));
 
 					/* Show the stats target if it's not default */
-					if (strcmp(PQgetvalue(result, i, 8), "-1") != 0)
+					if (strcmp(PQgetvalue(result, i, 9), "-1") != 0)
 						appendPQExpBuffer(&buf, "; STATISTICS %s",
-										  PQgetvalue(result, i, 8));
+										  PQgetvalue(result, i, 9));
 
 					printTableAddFooter(&cont, buf.data);
 				}
diff --git a/src/bin/psql/tab-complete.c b/src/bin/psql/tab-complete.c
index 6bd33a06cb1..7aaf4f42b6a 100644
--- a/src/bin/psql/tab-complete.c
+++ b/src/bin/psql/tab-complete.c
@@ -2893,7 +2893,7 @@ psql_completion(const char *text, int start, int end)
 	else if (Matches("CREATE", "STATISTICS", MatchAny))
 		COMPLETE_WITH("(", "ON");
 	else if (Matches("CREATE", "STATISTICS", MatchAny, "("))
-		COMPLETE_WITH("ndistinct", "dependencies", "mcv");
+		COMPLETE_WITH("ndistinct", "dependencies", "mcv", "sample");
 	else if (Matches("CREATE", "STATISTICS", MatchAny, "(*)"))
 		COMPLETE_WITH("ON");
 	else if (HeadMatches("CREATE", "STATISTICS", MatchAny) &&
diff --git a/src/include/catalog/pg_statistic_ext.h b/src/include/catalog/pg_statistic_ext.h
index b8520ba923b..533bc578991 100644
--- a/src/include/catalog/pg_statistic_ext.h
+++ b/src/include/catalog/pg_statistic_ext.h
@@ -82,6 +82,7 @@ DECLARE_ARRAY_FOREIGN_KEY((stxrelid, stxkeys), pg_attribute, (attrelid, attnum))
 #define STATS_EXT_DEPENDENCIES		'f'
 #define STATS_EXT_MCV				'm'
 #define STATS_EXT_EXPRESSIONS		'e'
+#define STATS_EXT_SAMPLE			's'
 
 #endif							/* EXPOSE_TO_CLIENT_CODE */
 
diff --git a/src/include/statistics/statistics.h b/src/include/statistics/statistics.h
index bb7ef1240e0..a57ed6e29b4 100644
--- a/src/include/statistics/statistics.h
+++ b/src/include/statistics/statistics.h
@@ -103,6 +103,7 @@ extern void BuildRelationExtStatistics(Relation onerel, bool inh, double totalro
 									   int natts, VacAttrStats **vacattrstats);
 extern int	ComputeExtStatisticsRows(Relation onerel,
 									 int natts, VacAttrStats **stats);
+extern bool statext_is_kind_enabled(HeapTuple htup, char kind);
 extern bool statext_is_kind_built(HeapTuple htup, char kind);
 extern Selectivity dependencies_clauselist_selectivity(PlannerInfo *root,
 													   List *clauses,
@@ -127,4 +128,16 @@ extern StatisticExtInfo *choose_best_statistics(List *stats, char requiredkind,
 												int nclauses);
 extern HeapTuple statext_expressions_load(Oid stxoid, bool inh, int idx);
 
+extern StatisticExtInfo *find_matching_sample(PlannerInfo *root, RelOptInfo *rel,
+											  Bitmapset *attnums, List *exprs);
+
+extern bool statext_try_join_estimates(PlannerInfo *root, List *clauses, int varRelid,
+									   JoinType jointype, SpecialJoinInfo *sjinfo,
+									   Bitmapset *estimatedclauses);
+
+extern Selectivity statext_clauselist_join_selectivity(PlannerInfo *root, List *clauses,
+													   int varRelid,
+													   JoinType jointype, SpecialJoinInfo *sjinfo,
+													   Bitmapset **estimatedclauses);
+
 #endif							/* STATISTICS_H */
diff --git a/src/test/regress/expected/sysviews.out b/src/test/regress/expected/sysviews.out
index 2088857615a..5a3f6bbc10b 100644
--- a/src/test/regress/expected/sysviews.out
+++ b/src/test/regress/expected/sysviews.out
@@ -119,10 +119,13 @@ select name, setting from pg_settings where name like 'enable%';
  enable_partition_pruning       | on
  enable_partitionwise_aggregate | off
  enable_partitionwise_join      | off
+ enable_sample_join_correlate   | on
+ enable_sample_join_estimates   | on
+ enable_sample_scan_estimates   | on
  enable_seqscan                 | on
  enable_sort                    | on
  enable_tidscan                 | on
-(20 rows)
+(23 rows)
 
 -- Test that the pg_timezone_names and pg_timezone_abbrevs views are
 -- more-or-less working.  We can't test their contents in any great detail

Reply via email to