On Fri, 5 Jul 2024 at 12:56, Joel Jacobson <j...@compiler.org> wrote:
>
> Interesting you got so bad bench results for v6-mul_var_int64.patch
> for var1ndigits=4, that patch is actually the winner on AMD Ryzen 9 7950X3D.

Interesting.

> On Intel Core i9-14900K the winner is 
> v6-optimize-numeric-mul_var-small-var1-arbitrary-var2.patch.

That must be random noise, since
v6-optimize-numeric-mul_var-small-var1-arbitrary-var2.patch doesn't
invoke mul_var_small() for 4-digit inputs.

> On Apple M3 Max, HEAD is the winner.

Importantly, mul_var_int64() is around 1.25x slower there, and it was
even worse on my machine.

Attached is a v7 mul_var_small() patch adding 4-digit support. For me,
this gives a nice speedup:

SELECT SUM(var1*var2) FROM bench_mul_var_var1ndigits_4;
Time: 5617.150 ms (00:05.617)  -- HEAD
Time: 8203.081 ms (00:08.203)  -- v6-mul_var_int64.patch
Time: 4750.212 ms (00:04.750)  -- v7-mul_var_small.patch

The other advantage, of course, is that it doesn't require 128-bit
integer support.

Regards,
Dean
diff --git a/src/backend/utils/adt/numeric.c b/src/backend/utils/adt/numeric.c
new file mode 100644
index 5510a20..b9497e1
--- a/src/backend/utils/adt/numeric.c
+++ b/src/backend/utils/adt/numeric.c
@@ -551,6 +551,8 @@ static void sub_var(const NumericVar *va
 static void mul_var(const NumericVar *var1, const NumericVar *var2,
 					NumericVar *result,
 					int rscale);
+static void mul_var_small(const NumericVar *var1, const NumericVar *var2,
+						  NumericVar *result, int rscale);
 static void div_var(const NumericVar *var1, const NumericVar *var2,
 					NumericVar *result,
 					int rscale, bool round);
@@ -8707,7 +8709,7 @@ mul_var(const NumericVar *var1, const Nu
 	var1digits = var1->digits;
 	var2digits = var2->digits;
 
-	if (var1ndigits == 0 || var2ndigits == 0)
+	if (var1ndigits == 0)
 	{
 		/* one or both inputs is zero; so is result */
 		zero_var(result);
@@ -8715,6 +8717,17 @@ mul_var(const NumericVar *var1, const Nu
 		return;
 	}
 
+	/*
+	 * If var1 has 4 digits or fewer, and we are computing the exact result,
+	 * with no rounding, delegate to mul_var_small() which uses a faster short
+	 * multiplication algorithm.
+	 */
+	if (var1ndigits <= 4 && rscale == var1->dscale + var2->dscale)
+	{
+		mul_var_small(var1, var2, result, rscale);
+		return;
+	}
+
 	/* Determine result sign and (maximum possible) weight */
 	if (var1->sign == var2->sign)
 		res_sign = NUMERIC_POS;
@@ -8858,6 +8871,221 @@ mul_var(const NumericVar *var1, const Nu
 	result->sign = res_sign;
 
 	/* Round to target rscale (and set result->dscale) */
+	round_var(result, rscale);
+
+	/* Strip leading and trailing zeroes */
+	strip_var(result);
+}
+
+
+/*
+ * mul_var_small() -
+ *
+ *	This has the same API as mul_var, but it assumes that var1 has no more
+ *	than 4 digits and var2 has at least as many digits as var1.  For variables
+ *	satisfying these conditions, the product can be computed more quickly than
+ *	the general algorithm used in mul_var.
+ */
+static void
+mul_var_small(const NumericVar *var1, const NumericVar *var2,
+			  NumericVar *result, int rscale)
+{
+	int			var1ndigits = var1->ndigits;
+	int			var2ndigits = var2->ndigits;
+	NumericDigit *var1digits = var1->digits;
+	NumericDigit *var2digits = var2->digits;
+	int			res_sign;
+	int			res_weight;
+	int			res_ndigits;
+	NumericDigit *res_buf;
+	NumericDigit *res_digits;
+	uint32		carry;
+	uint32		term;
+
+	/* Check preconditions */
+	Assert(var1ndigits <= 4);
+	Assert(var2ndigits >= var1ndigits);
+
+	/* Determine result sign and (maximum possible) weight */
+	if (var1->sign == var2->sign)
+		res_sign = NUMERIC_POS;
+	else
+		res_sign = NUMERIC_NEG;
+	res_weight = var1->weight + var2->weight + 2;
+
+	/* Determine the number of result digits to compute - cf. mul_var() */
+	res_ndigits = var1ndigits + var2ndigits + 1;
+
+	if (res_ndigits < 3)
+	{
+		/* All input digits will be ignored; so result is zero */
+		zero_var(result);
+		result->dscale = rscale;
+		return;
+	}
+
+	/* Allocate result digit array */
+	res_buf = digitbuf_alloc(res_ndigits);
+	res_buf[0] = 0;				/* spare digit for later rounding */
+	res_digits = res_buf + 1;
+
+	/*
+	 * Compute the result digits in reverse, in one pass, propagating the
+	 * carry up as we go.
+	 *
+	 * This computes res_digits[res_ndigits - 2], ... res_digits[0] by summing
+	 * the products var1digits[i1] * var2digits[i2] for which i1 + i2 + 1 is
+	 * the result index.
+	 */
+	switch (var1ndigits)
+	{
+		case 1:
+			/* ---------
+			 * 1-digit case:
+			 *		var1ndigits = 1
+			 *		var2ndigits >= 1
+			 *		res_ndigits = var2ndigits + 2
+			 * ----------
+			 */
+			carry = 0;
+			for (int i = res_ndigits - 3; i >= 0; i--)
+			{
+				term = (uint32) var1digits[0] * var2digits[i] + carry;
+				res_digits[i + 1] = (NumericDigit) (term % NBASE);
+				carry = term / NBASE;
+			}
+			res_digits[0] = (NumericDigit) carry;
+			break;
+
+		case 2:
+			/* ---------
+			 * 2-digit case:
+			 *		var1ndigits = 2
+			 *		var2ndigits >= 2
+			 *		res_ndigits = var2ndigits + 3
+			 * ----------
+			 */
+			/* last result digit and carry */
+			term = (uint32) var1digits[1] * var2digits[res_ndigits - 4];
+			res_digits[res_ndigits - 2] = (NumericDigit) (term % NBASE);
+			carry = term / NBASE;
+
+			/* remaining digits, except for the first two */
+			for (int i = res_ndigits - 4; i >= 1; i--)
+			{
+				term = (uint32) var1digits[0] * var2digits[i] +
+					(uint32) var1digits[1] * var2digits[i - 1] + carry;
+				res_digits[i + 1] = (NumericDigit) (term % NBASE);
+				carry = term / NBASE;
+			}
+
+			/* first two digits */
+			term = (uint32) var1digits[0] * var2digits[0] + carry;
+			res_digits[1] = (NumericDigit) (term % NBASE);
+			res_digits[0] = (NumericDigit) (term / NBASE);
+			break;
+
+		case 3:
+			/* ---------
+			 * 3-digit case:
+			 *		var1ndigits = 3
+			 *		var2ndigits >= 3
+			 *		res_ndigits = var2ndigits + 4
+			 * ----------
+			 */
+			/* last two result digits */
+			term = (uint32) var1digits[2] * var2digits[res_ndigits - 5];
+			res_digits[res_ndigits - 2] = (NumericDigit) (term % NBASE);
+			carry = term / NBASE;
+
+			term = (uint32) var1digits[1] * var2digits[res_ndigits - 5] +
+				(uint32) var1digits[2] * var2digits[res_ndigits - 6] + carry;
+			res_digits[res_ndigits - 3] = (NumericDigit) (term % NBASE);
+			carry = term / NBASE;
+
+			/* remaining digits, except for the first three */
+			for (int i = res_ndigits - 5; i >= 2; i--)
+			{
+				term = (uint32) var1digits[0] * var2digits[i] +
+					(uint32) var1digits[1] * var2digits[i - 1] +
+					(uint32) var1digits[2] * var2digits[i - 2] + carry;
+				res_digits[i + 1] = (NumericDigit) (term % NBASE);
+				carry = term / NBASE;
+			}
+
+			/* first three digits */
+			term = (uint32) var1digits[0] * var2digits[1] +
+				(uint32) var1digits[1] * var2digits[0] + carry;
+			res_digits[2] = (NumericDigit) (term % NBASE);
+			carry = term / NBASE;
+
+			term = (uint32) var1digits[0] * var2digits[0] + carry;
+			res_digits[1] = (NumericDigit) (term % NBASE);
+			res_digits[0] = (NumericDigit) (term / NBASE);
+			break;
+
+		case 4:
+			/* ---------
+			 * 4-digit case:
+			 *		var1ndigits = 4
+			 *		var2ndigits >= 4
+			 *		res_ndigits = var2ndigits + 5
+			 * ----------
+			 */
+			/* last three result digits */
+			term = (uint32) var1digits[3] * var2digits[res_ndigits - 6];
+			res_digits[res_ndigits - 2] = (NumericDigit) (term % NBASE);
+			carry = term / NBASE;
+
+			term = (uint32) var1digits[2] * var2digits[res_ndigits - 6] +
+				(uint32) var1digits[3] * var2digits[res_ndigits - 7] + carry;
+			res_digits[res_ndigits - 3] = (NumericDigit) (term % NBASE);
+			carry = term / NBASE;
+
+			term = (uint32) var1digits[1] * var2digits[res_ndigits - 6] +
+				(uint32) var1digits[2] * var2digits[res_ndigits - 7] +
+				(uint32) var1digits[3] * var2digits[res_ndigits - 8] + carry;
+			res_digits[res_ndigits - 4] = (NumericDigit) (term % NBASE);
+			carry = term / NBASE;
+
+			/* remaining digits, except for the first four */
+			for (int i = res_ndigits - 6; i >= 3; i--)
+			{
+				term = (uint32) var1digits[0] * var2digits[i] +
+					(uint32) var1digits[1] * var2digits[i - 1] +
+					(uint32) var1digits[2] * var2digits[i - 2] +
+					(uint32) var1digits[3] * var2digits[i - 3] + carry;
+				res_digits[i + 1] = (NumericDigit) (term % NBASE);
+				carry = term / NBASE;
+			}
+
+			/* first four digits */
+			term = (uint32) var1digits[0] * var2digits[2] +
+				(uint32) var1digits[1] * var2digits[1] +
+				(uint32) var1digits[2] * var2digits[0] + carry;
+			res_digits[3] = (NumericDigit) (term % NBASE);
+			carry = term / NBASE;
+
+			term = (uint32) var1digits[0] * var2digits[1] +
+				(uint32) var1digits[1] * var2digits[0] + carry;
+			res_digits[2] = (NumericDigit) (term % NBASE);
+			carry = term / NBASE;
+
+			term = (uint32) var1digits[0] * var2digits[0] + carry;
+			res_digits[1] = (NumericDigit) (term % NBASE);
+			res_digits[0] = (NumericDigit) (term / NBASE);
+			break;
+	}
+
+	/* Store the product in result (minus extra rounding digit) */
+	digitbuf_free(result->buf);
+	result->ndigits = res_ndigits - 1;
+	result->buf = res_buf;
+	result->digits = res_digits;
+	result->weight = res_weight - 1;
+	result->sign = res_sign;
+
+	/* Round to target rscale (and set result->dscale) */
 	round_var(result, rscale);
 
 	/* Strip leading and trailing zeroes */

Reply via email to