Relational Algebraic Equivalence Transformation Rules

1. Conjunctive selection operations can be deconstructed into a sequence of individual selections; cascade of σ.

$$
\sigma_{\theta_{1} \wedge \theta_{2}}(E)=\sigma_{\theta_{1}}\left(\sigma_{\theta_{2}}(E)\right)
$$

2. Selection operations are commutative:

$$
\sigma_{\theta_{1}}\left(\sigma_{\theta_{2}}(E)\right)=\sigma_{\theta_{2}}\left(\sigma_{\theta_{1}}(E)\right)
$$

3. Only the final operations in a sequence of projection operations is needed, the others can be omitted; cascade of Π

$$
\Pi_{L_{1}}\left(\Pi_{L_{2}}\left(\ldots\left(\Pi_{L_{n}}(E)\right) \ldots\right)\right)=\Pi_{L_{1}}(E)
$$

4. Selections can be combined with Cartesian products and theta joins:

$$
\begin{aligned}
\sigma_{\theta}\left(E_{1} \times E_{2}\right) & =E_{1} \bowtie_{\theta} E_{2} \\
\sigma_{\theta_{1}}\left(E_{1} \bowtie_{\sigma_{\theta_{2}}} E_{2}\right) & =E_{1} \bowtie_{\theta_{1} \wedge \theta_{2}} E_{2}
\end{aligned}
$$

5. Theta join operations are commutative:

$$
E_{1} \bowtie_{\theta} E_{2}=E_{2} \bowtie_{\theta} E_{1}
$$

6. Natural-join operations are associative:

$$
\left(E_{1} \bowtie E_{2}\right) \bowtie E_{3}=E_{1} \bowtie\left(E_{2} \bowtie E_{3}\right)
$$

Theta joins are associative in the following manner

$$
\left(E_{1} \bowtie_{\theta_{1}} E_{2}\right) \bowtie_{\theta_{2} \wedge \theta_{3}} E_{3}=E_{1} \bowtie_{\theta_{1} \wedge \theta_{3}}\left(E_{2} \bowtie_{\theta_{2}} E_{3}\right)
$$

where θ_{2} involves attributes from E_{2} and E_{3} only.
7. The selection operation distributes over the theta join operation under the following two conditions:
(a) It distributes when all the attributes in the selection condition θ_{0} involve only the attributes of one of the expressions $\left(E_{1}\right)$ being joined.

$$
\sigma_{\theta_{0}}\left(E_{1} \bowtie_{\theta} E_{2}\right)=\left(\sigma_{\theta_{0}}\left(E_{1}\right)\right) \bowtie_{\theta} E_{2}
$$

(b) It distributes when the selection condition θ_{1} involves only the attributes of E_{1} and θ_{2} involves only the attributes of E_{2}

$$
\sigma_{\theta_{1} \wedge \theta_{2}}\left(E_{1} \bowtie_{\theta} E_{2}\right)=\left(\sigma_{\theta_{1}}\left(E_{1}\right)\right) \bowtie_{\theta}\left(\sigma_{\theta_{2}}\left(E_{2}\right)\right)
$$

8. The projection operation distributes over the theta join.
(a) Let L_{1} and L_{2} be attributes of E_{1} and E_{2} respectively. Suppose that the join condition θ involves only attributes in $L_{1} \cup$ L_{2}. Then

$$
\Pi_{L_{1} \cup L_{2}}\left(E_{1} \bowtie_{\theta} E_{2}\right)=\left(\Pi_{L_{1}}\left(E_{1}\right)\right) \bowtie_{\theta}\left(\Pi_{L_{2}}\left(E_{2}\right)\right)
$$

(b) Consider a join $E_{1} \bowtie_{\theta} E_{2}$. Let L_{1} and L_{2} be sets of attributes from E_{1} and E_{2} respectively. Let L_{3} be attributes of E_{1} that are involved in the join condition θ, but are not in $L_{1} \cup L_{2}$, and let L_{4} be attributes of E_{2} that are involved in the join condition θ, but are not in $L_{1} \cup L_{2}$. Then

$$
\Pi_{L_{1} \cup L_{2}}\left(E_{1} \bowtie_{\theta} E_{2}\right)=\Pi_{L_{1} \cup L_{2}}\left(\left(\Pi_{L_{1} \cup L_{3}}\left(E_{1}\right)\right) \bowtie_{\theta}\left(\Pi_{L_{2} \cup L_{4}}\left(E_{2}\right)\right)\right)
$$

9. The set operations union and intersection are commutative.

$$
\begin{aligned}
& E_{1} \cup E_{2}=E_{2} \cup E_{1} \\
& E_{1} \cap E_{2}=E_{2} \cap E_{1}
\end{aligned}
$$

Set difference is not commutative.
10. Set union and intersection are associative.

$$
\begin{aligned}
& \left(E_{1} \cup E_{2}\right) \cup E_{3}=E_{1} \cup\left(E_{2} \cup E_{3}\right) \\
& \left(E_{1} \cap E_{2}\right) \cap E_{3}=E_{1} \cap\left(E_{2} \cap E_{3}\right)
\end{aligned}
$$

11. The selection operation distributes over the union, intersection, and set-difference operations.

$$
\sigma_{P}\left(E_{1}-E_{2}\right)=\sigma_{P}\left(E_{1}\right)-E_{2}=\sigma_{P}\left(E_{1}\right)-\sigma_{P}\left(E_{2}\right)
$$

12. The projection operation distributes over the union operation.

$$
\Pi_{L}\left(E_{1} \cup E_{2}\right)=\left(\Pi_{L}\left(E_{1}\right)\right) \cup\left(\Pi_{L}\left(E_{2}\right)\right)
$$

