I'm posting this to performance in case our workaround may be of benefit to
someone with a similar issue. I'm posting to hackers because I hope we can
improve our planner in this area so that a workaround is not necessary. (It
might make sense to reply to one group or the other, depending on reply
content.)
We are converting from a commercial database (which shall remain unnamed here,
due to license restrictions on publishing benchmarks). Most queries run faster
on PostgreSQL; a small number choose very poor plans and run much longer. This
particular query runs on the commercial product in 6.1s first time, 1.4s
cached. In PostgreSQL it runs in about 144s both first time and cached. I was
able to use an easy but fairly ugly rewrite (getting duplicate rows and
eliminating them with DISTINCT) which runs on the commercial product in
9.2s/3.0s and in PostgreSQL in 2.0s/0.7s.
Here are the tables:
Table "public.TranHeader"
Column | Type | Modifiers
---------------+------------------+-----------
tranNo | "TranNoT" | not null
countyNo | "CountyNoT" | not null
acctPd | "DateT" | not null
date | "DateT" | not null
isComplete | boolean | not null
tranId | "TranIdT" | not null
tranType | "TranTypeT" | not null
userId | "UserIdT" | not null
workstationId | "WorkstationIdT" | not null
time | "TimeT" |
Indexes:
"TranHeader_pkey" PRIMARY KEY, btree ("tranNo", "countyNo")
"TranHeader_TranAcctPeriod" UNIQUE, btree ("acctPd", "tranNo", "countyNo")
"TranHeader_TranDate" UNIQUE, btree (date, "tranNo", "countyNo")
Table "public.TranDetail"
Column | Type | Modifiers
-----------------+--------------------+-----------
tranNo | "TranNoT" | not null
tranDetailSeqNo | "TranDetailSeqNoT" | not null
countyNo | "CountyNoT" | not null
acctCode | "AcctCodeT" | not null
amt | "MoneyT" | not null
assessNo | "TranIdT" |
caseNo | "CaseNoT" |
citnNo | "CitnNoT" |
citnViolDate | "DateT" |
issAgencyNo | "IssAgencyNoT" |
partyNo | "PartyNoT" |
payableNo | "PayableNoT" |
rcvblNo | "RcvblNoT" |
Indexes:
"TranDetail_pkey" PRIMARY KEY, btree ("tranNo", "tranDetailSeqNo",
"countyNo")
"TranDetail_TranDetCaseNo" UNIQUE, btree ("caseNo", "tranNo",
"tranDetailSeqNo", "countyNo")
"TranDetail_TranDetPay" UNIQUE, btree ("payableNo", "tranNo",
"tranDetailSeqNo", "countyNo")
"TranDetail_TranDetRcvbl" UNIQUE, btree ("rcvblNo", "tranNo",
"tranDetailSeqNo", "countyNo")
"TranDetail_TranDetAcct" btree ("acctCode", "citnNo", "countyNo")
Table "public.Adjustment"
Column | Type | Modifiers
-----------------+-----------------------+-----------
adjustmentNo | "TranIdT" | not null
countyNo | "CountyNoT" | not null
date | "DateT" | not null
isTranVoided | boolean | not null
reasonCode | "ReasonCodeT" | not null
tranNo | "TranNoT" | not null
adjustsTranId | "TranIdT" |
adjustsTranNo | "TranNoT" |
adjustsTranType | "TranTypeT" |
explanation | character varying(50) |
Indexes:
"Adjustment_pkey" PRIMARY KEY, btree ("adjustmentNo", "countyNo")
"Adjustment_AdjustsTranId" btree ("adjustsTranId", "adjustsTranType",
"tranNo", "countyNo")
"Adjustment_AdjustsTranNo" btree ("adjustsTranNo", "tranNo", "countyNo")
"Adjustment_Date" btree (date, "countyNo")
Admittedly, the indexes are optimized for our query load under the commercial
product, which can use the "covering index" optimization.
explain analyze
SELECT "A"."adjustmentNo", "A"."tranNo", "A"."countyNo", "H"."date",
"H"."userId", "H"."time"
FROM "Adjustment" "A"
JOIN "TranHeader" "H" ON ("H"."tranId" = "A"."adjustmentNo" AND
"H"."countyNo" = "A"."countyNo" AND "H"."tranNo" = "A"."tranNo")
WHERE "H"."tranType" = 'A'
AND "A"."date" > DATE '2006-01-01'
AND "H"."countyNo" = 66
AND "A"."countyNo" = 66
AND EXISTS
(
SELECT 1 FROM "TranDetail" "D"
WHERE "D"."tranNo" = "H"."tranNo"
AND "D"."countyNo" = "H"."countyNo"
AND "D"."caseNo" LIKE '2006TR%'
)
;
Nested Loop (cost=182.56..72736.37 rows=1 width=46) (actual
time=6398.108..143631.427 rows=2205 loops=1)
Join Filter: (("H"."tranId")::bpchar = ("A"."adjustmentNo")::bpchar)
-> Bitmap Heap Scan on "Adjustment" "A" (cost=182.56..1535.69 rows=11542
width=22) (actual time=38.098..68.324 rows=12958 loops=1)
Recheck Cond: (((date)::date > '2006-01-01'::date) AND
(("countyNo")::smallint = 66))
-> Bitmap Index Scan on "Adjustment_Date" (cost=0.00..179.67
rows=11542 width=0) (actual time=32.958..32.958 rows=12958 loops=1)
Index Cond: (((date)::date > '2006-01-01'::date) AND
(("countyNo")::smallint = 66))
-> Index Scan using "TranHeader_pkey" on "TranHeader" "H" (cost=0.00..6.15
rows=1 width=46) (actual time=11.073..11.074 rows=0 loops=12958)
Index Cond: ((("H"."tranNo")::integer = ("A"."tranNo")::integer) AND
(("H"."countyNo")::smallint = 66))
Filter: ((("tranType")::bpchar = 'A'::bpchar) AND (subplan))
SubPlan
-> Index Scan using "TranDetail_TranDetCaseNo" on "TranDetail" "D"
(cost=0.00..4.73 rows=1 width=0) (actual time=11.038..11.038 rows=0 loops=12958)
Index Cond: ((("caseNo")::bpchar >= '2006TR'::bpchar) AND
(("caseNo")::bpchar < '2006TS'::bpchar) AND (("tranNo")::integer =
($0)::integer) AND (("countyNo")::smallint = ($1)::smallint))
Filter: (("caseNo")::bpchar ~~ '2006TR%'::text)
Total runtime: 143633.838 ms
The commercial product scans the index on caseNo in TranDetail to build a work
table of unique values, then uses indexed access to the TranHeader and then to
Adjustment. I was able to get approximately the same plan (except the
duplicates are eliminated at the end) in PostgreSQL by rewriting to this:
SELECT DISTINCT "A"."adjustmentNo", "A"."tranNo", "A"."countyNo", "H"."date",
"H"."userId", "H"."time"
FROM "Adjustment" "A"
JOIN "TranHeader" "H" ON ("H"."tranId" = "A"."adjustmentNo" AND
"H"."countyNo" = "A"."countyNo" AND "H"."tranNo" = "A"."tranNo")
JOIN "TranDetail" "D" ON ("D"."tranNo" = "H"."tranNo" AND "D"."countyNo" =
"H"."countyNo" AND "D"."caseNo" LIKE '2006TR%')
WHERE "H"."tranType" = 'A'
AND "A"."date" > DATE '2006-01-01'
AND "H"."countyNo" = 66
AND "A"."countyNo" = 66
;
Unique (cost=130.96..130.98 rows=1 width=46) (actual time=694.591..715.008
rows=2205 loops=1)
-> Sort (cost=130.96..130.96 rows=1 width=46) (actual
time=694.586..701.808 rows=16989 loops=1)
Sort Key: "A"."adjustmentNo", "A"."tranNo", "A"."countyNo", "H".date,
"H"."userId", "H"."time"
-> Nested Loop (cost=0.00..130.95 rows=1 width=46) (actual
time=0.157..636.779 rows=16989 loops=1)
Join Filter: (("H"."tranNo")::integer = ("A"."tranNo")::integer)
-> Nested Loop (cost=0.00..113.76 rows=4 width=50) (actual
time=0.131..452.544 rows=16989 loops=1)
-> Index Scan using "TranDetail_TranDetCaseNo" on
"TranDetail" "D" (cost=0.00..27.57 rows=20 width=6) (actual time=0.049..83.005
rows=46293 loops=1)
Index Cond: ((("caseNo")::bpchar >=
'2006TR'::bpchar) AND (("caseNo")::bpchar < '2006TS'::bpchar) AND (66 =
("countyNo")::smallint))
Filter: (("caseNo")::bpchar ~~ '2006TR%'::text)
-> Index Scan using "TranHeader_pkey" on "TranHeader" "H"
(cost=0.00..4.30 rows=1 width=46) (actual time=0.006..0.007 rows=0 loops=46293)
Index Cond: ((("D"."tranNo")::integer =
("H"."tranNo")::integer) AND (("H"."countyNo")::smallint = 66))
Filter: (("tranType")::bpchar = 'A'::bpchar)
-> Index Scan using "Adjustment_pkey" on "Adjustment" "A"
(cost=0.00..4.28 rows=1 width=22) (actual time=0.007..0.008 rows=1 loops=16989)
Index Cond: ((("H"."tranId")::bpchar =
("A"."adjustmentNo")::bpchar) AND (("A"."countyNo")::smallint = 66))
Filter: ((date)::date > '2006-01-01'::date)
Total runtime: 715.932 ms
I can't see any reason that PostgreSQL can't catch up to the other product on
this optimization issue. This usage of DISTINCT seems a bit sloppy; I usually
try to dissuade the application programmers from accumulating duplicates during
the joins and then eliminating them in this way.
-Kevin
---------------------------(end of broadcast)---------------------------
TIP 3: Have you checked our extensive FAQ?
http://www.postgresql.org/docs/faq