
Managing External Resources

Chapter 1

Managing External
Resources

Managing external resources (such as fonts, files, sockets...) can be tedious.
Pharo comes up with an external resource manager called NBExternalRe-
sourceManager developed by Igor Stasenko. This chapter is based on gor-
geous class comments and help. We are thankful for them. So let us explain
it a bit.

1.1 External Resource Manager

An external Resource Manager is responsible for managing the finalization
of external resources.

When object, registered as external resource is garbage collected, the re-
source manager is telling the object’s class to finalize its associated data (by
passing an object, received from resourceData message sent to an object at
registration time).

The External Resource Manager automatically keeps track for session
change (image save/boot), and ignores finalization of resources of old ses-
sions (since they are not longer valid, and cannot be freed since session
changed).

Like that, a user of NBExternalResourceManager doesn’t need to imple-
ment a session checking logic, and need only to:

1. a) register object as external resource:

[[[NBExternalResourceManager addResource: anObject.]]]

Managing External Resources

2 Managing External Resources

1. b) an object should understand the resourceData message, which is re-
membered at registration point (it can be any external resource like, id,
handle or memory pointer).

Then, when object is garbage collected, its class will receive the message
finalizeResourceData: to finalize the resource data passed as argument. The
passed data is exactly same as previously returned by resourceData method.

1.2 Example

Imagine that you want to represent an external resource by keeping its han-
dle.

Object subclass: #MyExternalObject
instanceVariableNames: 'handle'
classVariableNames: ''
poolDictionaries: ''
category: 'XYZ'

To let your object(s) to be managed by external resource manager, you
need to register it. Usually you do it after successfully claiming an external
resource:

MyExternalObject>>initialize

handle := self createNewExternalResource. "claim resource"
self assert: self handleIsValid. "etc..."

"Now, register receiver as external resource"
NBExternalResourceManager addResource: self

"Another form of use is:
NBExternalResourceManager addResource: self data: handle.

"

If you used addResource: method for registration, you should provide an
implementation of resourceData method:

MyExternalObject>>resourceData
^ handle "since we need only handle to identify external resource"

Now, for properly finalizing the external resource we should implement:

MyExternalObject class>> finalizeResourceData: aHandle
^ self destroyHandle: aHandle. "do whatever is needed to destroy the handle"

1.3 Sessions and external resource management 3

Note that in finalizeResourceData: you cannot access any other properties
of your instance, since it is already garbage collected. You also don’t need to
do a session checking, since it is done automatically by resource manager.

1.3 Sessions and external resource management

When we are manipulating external resources, it is important to clean them.
Now it is usefull to know whether a resource has been allocated during an-
other restart of the image or not (Imagine that your system restarted and
your cleaning process is not yet invoked). To help you in this task, Native-
Boost offers you the notion of session. By session, here, we mean the way
to identify uniquely a period of activity corresponding to an image start and
end running by VM. Each time image starts from disk , it means that we start
a new session.

You can use [NativeBoost>>uniqueSessionObject] for checking if session is
changed.

This is useful when you are holding a handle(or pointer) to external re-
source and need to manage it. Since user may decide to save image at any
moment, the objects holding a handles to external resources will be persisted
in image as well, but then when image restarted, those handles are no longer
valid and need special treatment (otherwise crash, boom, bang...)

You can, of course, use the well known approach by defining your own
startUp method, to cleanup invalid handles, but then you also need to reg-
ister your class for startup as well as make an educated guess about order
in which it should perform a startup relative to other services in your im-
age etc etc. Putting extra startup procedure also means slowing down an
image bootingß time (because you most probably will use allInstances mes-
sage), which sometimes is not desirable.

By using NativeBoost>>uniqueSessionObject we can avoid some of those
hurdles (we can’t avoid all), and instead implement a lazy (re)initialization
scheme, or just do a validity check before attempting to access a possibly
invalid external resource handle.

1.4 Lazy initialization strategy

Here is a possible way to handle external resource. For every entity (or group
of entities), which works with external resources, keep an associated session
object.

For example, let’s suppose that we have a class representing an external
library window and holding a handle of it:

4 Managing External Resources

Object subclass: #MyWindow
instanceVariableNames: ''handle''
category: ''MyPackage''

The approach is simple: every time we’re going to access a resource han-
dle (like passing a handle to external function), we should check that we’re
in same session, and therefore handle is still valid. If session is changed we
can either reinitialize our external resource, or just signal an error (instead of
crashing the VM).

So, first, let’s add an instance variable, named session to the class, which
will be associated with handle:

Object subclass: #MyWindow
instanceVariableNames: ''handle session''
category: ''MyPackage''

then , we can implement a simple method to check if we’re in same ses-
sion and therefore handle is still can be used:

MyWindow>>initializeWithHandle: aHandle
session := NativeBoost uniqueSessionObject.
handle := aHandle.
... do whatever you need ...

MyWindow>>checkSession
session == NativeBoost uniqueSessionObject

ifFalse: [self initializeForNewSessionOrSignalError].

Now in all places where we’re going to use the handle, we put a simple
self checkSession , like following:

MyWindow>>setTitle: aString
self checkSession; privateSetTitle: aString

(here, the privateSetTitle: is a method which performs the FFI callout).

1.5 Finalization

We can, of course, use approach for identifying session(s) together with fi-
nalization scheme (to prevent resource leaks when object representing an
external resource is garbage collected)

MyWindow>>initialize
super initialize.
session := NativeBoost uniqueSessionObject.
WeakRegistry default add: self.

1.6 Summary 5

MyWindow>>finalize
session == NativeBoost uniqueSessionObject

ifTrue: [
... destroy the handle ..]

ifFalse: [... we don''t care.. session is different anyways ...]

This is useful in situations, where we want to automatically free the exter-
nal resources held by our application, when they are no longer in use (and
therefore garbage collected). But since our object in question may survive
an image snapshot, and be GC’ed in different session, we should actually
check if we’re in same session and only then tell external library to deallocate
associated external resource, or just do nothing, since usually any external
resources which were available in previous session(s) is void anyways.

1.6 Summary

We hope that you enjoyed this little perl of Pharo programming. Note that
NBExternalResourceManager may be renamed and included in Pharo since
it is a really usefull class.

	 Managing External Resources
	 External Resource Manager
	 Example
	 Sessions and external resource management
	 Lazy initialization strategy
	 Finalization
	 Summary

