This is an automated email from the git hooks/post-receive script.

sebastic-guest pushed a commit to branch upstream-master
in repository pktools.

commit bd1c222b76545fdb5dc310736f1f4fb06b49de68
Author: Pieter Kempeneers <kempe...@gmail.com>
Date:   Wed Oct 31 18:07:25 2012 +0100

    added pkclassify_svm.cc and pkdsm2shadow.cc
---
 README                            |    8 +-
 src/algorithms/SVM_COPYRIGHT      |   31 +
 src/algorithms/svm.cpp            | 3114 +++++++++++++++++++++++++++++++++++++
 src/algorithms/svm.h              |  101 ++
 src/apps/Makefile.am              |    4 +-
 src/apps/Makefile.in              |   48 +-
 src/apps/pkclassify_svm.cc        | 1037 ++++++++++++
 src/apps/pkdsm2shadow.cc          |  148 ++
 src/apps/pkextract.cc             |    4 +-
 src/imageclasses/ImgWriterGdal.cc |    2 +
 10 files changed, 4466 insertions(+), 31 deletions(-)

diff --git a/README b/README
index 12bcc9c..aa8b4ca 100644
--- a/README
+++ b/README
@@ -14,7 +14,7 @@ To install the programs in pktools, refer to the file INSTALL
 
 Change history
 -------------
-June 25 2012, first public release of the code
-September 04 2012, introduced --enable-fann and --enable-las in configuration
-September 13 2012, support spectral filtering (z-dimension) in pkfilter using 
tapz option
-October 20 2012, support for SVM classifier 
+version 1.0 June 25 2012, first public release of the code
+version 2.1 September 04 2012, introduced --enable-fann and --enable-las in 
configuration
+version 2.2 September 13 2012, support spectral filtering (z-dimension) in 
pkfilter using tapz option
+version 2.3 October 20 2012, support for SVM classifier 
diff --git a/src/algorithms/SVM_COPYRIGHT b/src/algorithms/SVM_COPYRIGHT
new file mode 100644
index 0000000..9280fc0
--- /dev/null
+++ b/src/algorithms/SVM_COPYRIGHT
@@ -0,0 +1,31 @@
+
+Copyright (c) 2000-2012 Chih-Chung Chang and Chih-Jen Lin
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions
+are met:
+
+1. Redistributions of source code must retain the above copyright
+notice, this list of conditions and the following disclaimer.
+
+2. Redistributions in binary form must reproduce the above copyright
+notice, this list of conditions and the following disclaimer in the
+documentation and/or other materials provided with the distribution.
+
+3. Neither name of copyright holders nor the names of its contributors
+may be used to endorse or promote products derived from this software
+without specific prior written permission.
+
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR
+CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
diff --git a/src/algorithms/svm.cpp b/src/algorithms/svm.cpp
new file mode 100644
index 0000000..5e9fd28
--- /dev/null
+++ b/src/algorithms/svm.cpp
@@ -0,0 +1,3114 @@
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <ctype.h>
+#include <float.h>
+#include <string.h>
+#include <stdarg.h>
+#include <limits.h>
+#include <locale.h>
+//test
+// #include <iostream>
+#include "svm.h"
+int libsvm_version = LIBSVM_VERSION;
+typedef float Qfloat;
+typedef signed char schar;
+#ifndef min
+template <class T> static inline T min(T x,T y) { return (x<y)?x:y; }
+#endif
+#ifndef max
+template <class T> static inline T max(T x,T y) { return (x>y)?x:y; }
+#endif
+template <class T> static inline void swap(T& x, T& y) { T t=x; x=y; y=t; }
+template <class S, class T> static inline void clone(T*& dst, S* src, int n)
+{
+       dst = new T[n];
+       memcpy((void *)dst,(void *)src,sizeof(T)*n);
+}
+static inline double powi(double base, int times)
+{
+       double tmp = base, ret = 1.0;
+
+       for(int t=times; t>0; t/=2)
+       {
+               if(t%2==1) ret*=tmp;
+               tmp = tmp * tmp;
+       }
+       return ret;
+}
+#define INF HUGE_VAL
+#define TAU 1e-12
+#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
+
+static void print_string_stdout(const char *s)
+{
+       fputs(s,stdout);
+       fflush(stdout);
+}
+static void (*svm_print_string) (const char *) = &print_string_stdout;
+#if 1
+static void info(const char *fmt,...)
+{
+       char buf[BUFSIZ];
+       va_list ap;
+       va_start(ap,fmt);
+       vsprintf(buf,fmt,ap);
+       va_end(ap);
+       (*svm_print_string)(buf);
+}
+#else
+static void info(const char *fmt,...) {}
+#endif
+
+//
+// Kernel Cache
+//
+// l is the number of total data items
+// size is the cache size limit in bytes
+//
+class Cache
+{
+public:
+       Cache(int l,long int size);
+       ~Cache();
+
+       // request data [0,len)
+       // return some position p where [p,len) need to be filled
+       // (p >= len if nothing needs to be filled)
+       int get_data(const int index, Qfloat **data, int len);
+       void swap_index(int i, int j);  
+private:
+       int l;
+       long int size;
+       struct head_t
+       {
+               head_t *prev, *next;    // a circular list
+               Qfloat *data;
+               int len;                // data[0,len) is cached in this entry
+       };
+
+       head_t *head;
+       head_t lru_head;
+       void lru_delete(head_t *h);
+       void lru_insert(head_t *h);
+};
+
+Cache::Cache(int l_,long int size_):l(l_),size(size_)
+{
+       head = (head_t *)calloc(l,sizeof(head_t));      // initialized to 0
+       size /= sizeof(Qfloat);
+       size -= l * sizeof(head_t) / sizeof(Qfloat);
+       size = max(size, 2 * (long int) l);     // cache must be large enough 
for two columns
+       lru_head.next = lru_head.prev = &lru_head;
+}
+
+Cache::~Cache()
+{
+       for(head_t *h = lru_head.next; h != &lru_head; h=h->next)
+               free(h->data);
+       free(head);
+}
+
+void Cache::lru_delete(head_t *h)
+{
+       // delete from current location
+       h->prev->next = h->next;
+       h->next->prev = h->prev;
+}
+
+void Cache::lru_insert(head_t *h)
+{
+       // insert to last position
+       h->next = &lru_head;
+       h->prev = lru_head.prev;
+       h->prev->next = h;
+       h->next->prev = h;
+}
+
+int Cache::get_data(const int index, Qfloat **data, int len)
+{
+       head_t *h = &head[index];
+       if(h->len) lru_delete(h);
+       int more = len - h->len;
+
+       if(more > 0)
+       {
+               // free old space
+               while(size < more)
+               {
+                       head_t *old = lru_head.next;
+                       lru_delete(old);
+                       free(old->data);
+                       size += old->len;
+                       old->data = 0;
+                       old->len = 0;
+               }
+
+               // allocate new space
+               h->data = (Qfloat *)realloc(h->data,sizeof(Qfloat)*len);
+               size -= more;
+               swap(h->len,len);
+       }
+
+       lru_insert(h);
+       *data = h->data;
+       return len;
+}
+
+void Cache::swap_index(int i, int j)
+{
+       if(i==j) return;
+
+       if(head[i].len) lru_delete(&head[i]);
+       if(head[j].len) lru_delete(&head[j]);
+       swap(head[i].data,head[j].data);
+       swap(head[i].len,head[j].len);
+       if(head[i].len) lru_insert(&head[i]);
+       if(head[j].len) lru_insert(&head[j]);
+
+       if(i>j) swap(i,j);
+       for(head_t *h = lru_head.next; h!=&lru_head; h=h->next)
+       {
+               if(h->len > i)
+               {
+                       if(h->len > j)
+                               swap(h->data[i],h->data[j]);
+                       else
+                       {
+                               // give up
+                               lru_delete(h);
+                               free(h->data);
+                               size += h->len;
+                               h->data = 0;
+                               h->len = 0;
+                       }
+               }
+       }
+}
+
+//
+// Kernel evaluation
+//
+// the static method k_function is for doing single kernel evaluation
+// the constructor of Kernel prepares to calculate the l*l kernel matrix
+// the member function get_Q is for getting one column from the Q Matrix
+//
+class QMatrix {
+public:
+       virtual Qfloat *get_Q(int column, int len) const = 0;
+       virtual double *get_QD() const = 0;
+       virtual void swap_index(int i, int j) const = 0;
+       virtual ~QMatrix() {}
+};
+
+class Kernel: public QMatrix {
+public:
+       Kernel(int l, svm_node * const * x, const svm_parameter& param);
+       virtual ~Kernel();
+
+       static double k_function(const svm_node *x, const svm_node *y,
+                                const svm_parameter& param);
+       virtual Qfloat *get_Q(int column, int len) const = 0;
+       virtual double *get_QD() const = 0;
+       virtual void swap_index(int i, int j) const     // no so const...
+       {
+               swap(x[i],x[j]);
+               if(x_square) swap(x_square[i],x_square[j]);
+       }
+protected:
+
+       double (Kernel::*kernel_function)(int i, int j) const;
+
+private:
+       const svm_node **x;
+       double *x_square;
+
+       // svm_parameter
+       const int kernel_type;
+       const int degree;
+       const double gamma;
+       const double coef0;
+
+       static double dot(const svm_node *px, const svm_node *py);
+       double kernel_linear(int i, int j) const
+       {
+               return dot(x[i],x[j]);
+       }
+       double kernel_poly(int i, int j) const
+       {
+               return powi(gamma*dot(x[i],x[j])+coef0,degree);
+       }
+       double kernel_rbf(int i, int j) const
+       {
+               return exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j])));
+       }
+       double kernel_sigmoid(int i, int j) const
+       {
+               return tanh(gamma*dot(x[i],x[j])+coef0);
+       }
+       double kernel_precomputed(int i, int j) const
+       {
+               return x[i][(int)(x[j][0].value)].value;
+       }
+};
+
+Kernel::Kernel(int l, svm_node * const * x_, const svm_parameter& param)
+:kernel_type(param.kernel_type), degree(param.degree),
+ gamma(param.gamma), coef0(param.coef0)
+{
+       switch(kernel_type)
+       {
+               case LINEAR:
+                       kernel_function = &Kernel::kernel_linear;
+                       break;
+               case POLY:
+                       kernel_function = &Kernel::kernel_poly;
+                       break;
+               case RBF:
+                       kernel_function = &Kernel::kernel_rbf;
+                       break;
+               case SIGMOID:
+                       kernel_function = &Kernel::kernel_sigmoid;
+                       break;
+               case PRECOMPUTED:
+                       kernel_function = &Kernel::kernel_precomputed;
+                       break;
+       }
+
+       clone(x,x_,l);
+
+       if(kernel_type == RBF)
+       {
+               x_square = new double[l];
+               for(int i=0;i<l;i++)
+                       x_square[i] = dot(x[i],x[i]);
+       }
+       else
+               x_square = 0;
+}
+
+Kernel::~Kernel()
+{
+       delete[] x;
+       delete[] x_square;
+}
+
+double Kernel::dot(const svm_node *px, const svm_node *py)
+{
+       double sum = 0;
+       while(px->index != -1 && py->index != -1)
+       {
+               if(px->index == py->index)
+               {
+                       sum += px->value * py->value;
+                       ++px;
+                       ++py;
+               }
+               else
+               {
+                       if(px->index > py->index)
+                               ++py;
+                       else
+                               ++px;
+               }                       
+       }
+       return sum;
+}
+
+double Kernel::k_function(const svm_node *x, const svm_node *y,
+                         const svm_parameter& param)
+{
+       switch(param.kernel_type)
+       {
+               case LINEAR:
+                       return dot(x,y);
+               case POLY:
+                       return 
powi(param.gamma*dot(x,y)+param.coef0,param.degree);
+               case RBF:
+               {
+                       double sum = 0;
+                       while(x->index != -1 && y->index !=-1)
+                       {
+                               if(x->index == y->index)
+                               {
+                                       double d = x->value - y->value;
+                                       sum += d*d;
+                                       ++x;
+                                       ++y;
+                               }
+                               else
+                               {
+                                       if(x->index > y->index)
+                                       {       
+                                               sum += y->value * y->value;
+                                               ++y;
+                                       }
+                                       else
+                                       {
+                                               sum += x->value * x->value;
+                                               ++x;
+                                       }
+                               }
+                       }
+
+                       while(x->index != -1)
+                       {
+                               sum += x->value * x->value;
+                               ++x;
+                       }
+
+                       while(y->index != -1)
+                       {
+                               sum += y->value * y->value;
+                               ++y;
+                       }
+                       
+                       return exp(-param.gamma*sum);
+               }
+               case SIGMOID:
+                       return tanh(param.gamma*dot(x,y)+param.coef0);
+               case PRECOMPUTED:  //x: test (validation), y: SV
+                       return x[(int)(y->value)].value;
+               default:
+                       return 0;  // Unreachable 
+       }
+}
+
+// An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918
+// Solves:
+//
+//     min 0.5(\alpha^T Q \alpha) + p^T \alpha
+//
+//             y^T \alpha = \delta
+//             y_i = +1 or -1
+//             0 <= alpha_i <= Cp for y_i = 1
+//             0 <= alpha_i <= Cn for y_i = -1
+//
+// Given:
+//
+//     Q, p, y, Cp, Cn, and an initial feasible point \alpha
+//     l is the size of vectors and matrices
+//     eps is the stopping tolerance
+//
+// solution will be put in \alpha, objective value will be put in obj
+//
+class Solver {
+public:
+       Solver() {};
+       virtual ~Solver() {};
+
+       struct SolutionInfo {
+               double obj;
+               double rho;
+               double upper_bound_p;
+               double upper_bound_n;
+               double r;       // for Solver_NU
+       };
+
+       void Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
+                  double *alpha_, double Cp, double Cn, double eps,
+                  SolutionInfo* si, int shrinking);
+protected:
+       int active_size;
+       schar *y;
+       double *G;              // gradient of objective function
+       enum { LOWER_BOUND, UPPER_BOUND, FREE };
+       char *alpha_status;     // LOWER_BOUND, UPPER_BOUND, FREE
+       double *alpha;
+       const QMatrix *Q;
+       const double *QD;
+       double eps;
+       double Cp,Cn;
+       double *p;
+       int *active_set;
+       double *G_bar;          // gradient, if we treat free variables as 0
+       int l;
+       bool unshrink;  // XXX
+
+       double get_C(int i)
+       {
+               return (y[i] > 0)? Cp : Cn;
+       }
+       void update_alpha_status(int i)
+       {
+               if(alpha[i] >= get_C(i))
+                       alpha_status[i] = UPPER_BOUND;
+               else if(alpha[i] <= 0)
+                       alpha_status[i] = LOWER_BOUND;
+               else alpha_status[i] = FREE;
+       }
+       bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; }
+       bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; }
+       bool is_free(int i) { return alpha_status[i] == FREE; }
+       void swap_index(int i, int j);
+       void reconstruct_gradient();
+       virtual int select_working_set(int &i, int &j);
+       virtual double calculate_rho();
+       virtual void do_shrinking();
+private:
+       bool be_shrunk(int i, double Gmax1, double Gmax2);      
+};
+
+void Solver::swap_index(int i, int j)
+{
+       Q->swap_index(i,j);
+       swap(y[i],y[j]);
+       swap(G[i],G[j]);
+       swap(alpha_status[i],alpha_status[j]);
+       swap(alpha[i],alpha[j]);
+       swap(p[i],p[j]);
+       swap(active_set[i],active_set[j]);
+       swap(G_bar[i],G_bar[j]);
+}
+
+void Solver::reconstruct_gradient()
+{
+       // reconstruct inactive elements of G from G_bar and free variables
+
+       if(active_size == l) return;
+
+       int i,j;
+       int nr_free = 0;
+
+       for(j=active_size;j<l;j++)
+               G[j] = G_bar[j] + p[j];
+
+       for(j=0;j<active_size;j++)
+               if(is_free(j))
+                       nr_free++;
+
+       if(2*nr_free < active_size)
+               info("\nWARNING: using -h 0 may be faster\n");
+
+       if (nr_free*l > 2*active_size*(l-active_size))
+       {
+               for(i=active_size;i<l;i++)
+               {
+                       const Qfloat *Q_i = Q->get_Q(i,active_size);
+                       for(j=0;j<active_size;j++)
+                               if(is_free(j))
+                                       G[i] += alpha[j] * Q_i[j];
+               }
+       }
+       else
+       {
+               for(i=0;i<active_size;i++)
+                       if(is_free(i))
+                       {
+                               const Qfloat *Q_i = Q->get_Q(i,l);
+                               double alpha_i = alpha[i];
+                               for(j=active_size;j<l;j++)
+                                       G[j] += alpha_i * Q_i[j];
+                       }
+       }
+}
+
+void Solver::Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
+                  double *alpha_, double Cp, double Cn, double eps,
+                  SolutionInfo* si, int shrinking)
+{
+       this->l = l;
+       this->Q = &Q;
+       QD=Q.get_QD();
+       clone(p, p_,l);
+       clone(y, y_,l);
+       clone(alpha,alpha_,l);
+       this->Cp = Cp;
+       this->Cn = Cn;
+       this->eps = eps;
+       unshrink = false;
+
+       // initialize alpha_status
+       {
+               alpha_status = new char[l];
+               for(int i=0;i<l;i++)
+                       update_alpha_status(i);
+       }
+
+       // initialize active set (for shrinking)
+       {
+               active_set = new int[l];
+               for(int i=0;i<l;i++)
+                       active_set[i] = i;
+               active_size = l;
+       }
+
+       // initialize gradient
+       {
+               G = new double[l];
+               G_bar = new double[l];
+               int i;
+               for(i=0;i<l;i++)
+               {
+                       G[i] = p[i];
+                       G_bar[i] = 0;
+               }
+               for(i=0;i<l;i++)
+                       if(!is_lower_bound(i))
+                       {
+                               const Qfloat *Q_i = Q.get_Q(i,l);
+                               double alpha_i = alpha[i];
+                               int j;
+                               for(j=0;j<l;j++)
+                                       G[j] += alpha_i*Q_i[j];
+                               if(is_upper_bound(i))
+                                       for(j=0;j<l;j++)
+                                               G_bar[j] += get_C(i) * Q_i[j];
+                       }
+       }
+
+       // optimization step
+
+       int iter = 0;
+       int max_iter = max(10000000, l>INT_MAX/100 ? INT_MAX : 100*l);
+       int counter = min(l,1000)+1;
+       
+       while(iter < max_iter)
+       {
+               // show progress and do shrinking
+
+               if(--counter == 0)
+               {
+                       counter = min(l,1000);
+                       if(shrinking) do_shrinking();
+                       info(".");
+               }
+
+               int i,j;
+               if(select_working_set(i,j)!=0)
+               {
+                       // reconstruct the whole gradient
+                       reconstruct_gradient();
+                       // reset active set size and check
+                       active_size = l;
+                       info("*");
+                       if(select_working_set(i,j)!=0)
+                               break;
+                       else
+                               counter = 1;    // do shrinking next iteration
+               }
+               
+               ++iter;
+
+               // update alpha[i] and alpha[j], handle bounds carefully
+               
+               const Qfloat *Q_i = Q.get_Q(i,active_size);
+               const Qfloat *Q_j = Q.get_Q(j,active_size);
+
+               double C_i = get_C(i);
+               double C_j = get_C(j);
+
+               double old_alpha_i = alpha[i];
+               double old_alpha_j = alpha[j];
+
+               if(y[i]!=y[j])
+               {
+                       double quad_coef = QD[i]+QD[j]+2*Q_i[j];
+                       if (quad_coef <= 0)
+                               quad_coef = TAU;
+                       double delta = (-G[i]-G[j])/quad_coef;
+                       double diff = alpha[i] - alpha[j];
+                       alpha[i] += delta;
+                       alpha[j] += delta;
+                       
+                       if(diff > 0)
+                       {
+                               if(alpha[j] < 0)
+                               {
+                                       alpha[j] = 0;
+                                       alpha[i] = diff;
+                               }
+                       }
+                       else
+                       {
+                               if(alpha[i] < 0)
+                               {
+                                       alpha[i] = 0;
+                                       alpha[j] = -diff;
+                               }
+                       }
+                       if(diff > C_i - C_j)
+                       {
+                               if(alpha[i] > C_i)
+                               {
+                                       alpha[i] = C_i;
+                                       alpha[j] = C_i - diff;
+                               }
+                       }
+                       else
+                       {
+                               if(alpha[j] > C_j)
+                               {
+                                       alpha[j] = C_j;
+                                       alpha[i] = C_j + diff;
+                               }
+                       }
+               }
+               else
+               {
+                       double quad_coef = QD[i]+QD[j]-2*Q_i[j];
+                       if (quad_coef <= 0)
+                               quad_coef = TAU;
+                       double delta = (G[i]-G[j])/quad_coef;
+                       double sum = alpha[i] + alpha[j];
+                       alpha[i] -= delta;
+                       alpha[j] += delta;
+
+                       if(sum > C_i)
+                       {
+                               if(alpha[i] > C_i)
+                               {
+                                       alpha[i] = C_i;
+                                       alpha[j] = sum - C_i;
+                               }
+                       }
+                       else
+                       {
+                               if(alpha[j] < 0)
+                               {
+                                       alpha[j] = 0;
+                                       alpha[i] = sum;
+                               }
+                       }
+                       if(sum > C_j)
+                       {
+                               if(alpha[j] > C_j)
+                               {
+                                       alpha[j] = C_j;
+                                       alpha[i] = sum - C_j;
+                               }
+                       }
+                       else
+                       {
+                               if(alpha[i] < 0)
+                               {
+                                       alpha[i] = 0;
+                                       alpha[j] = sum;
+                               }
+                       }
+               }
+
+               // update G
+
+               double delta_alpha_i = alpha[i] - old_alpha_i;
+               double delta_alpha_j = alpha[j] - old_alpha_j;
+               
+               for(int k=0;k<active_size;k++)
+               {
+                       G[k] += Q_i[k]*delta_alpha_i + Q_j[k]*delta_alpha_j;
+               }
+
+               // update alpha_status and G_bar
+
+               {
+                       bool ui = is_upper_bound(i);
+                       bool uj = is_upper_bound(j);
+                       update_alpha_status(i);
+                       update_alpha_status(j);
+                       int k;
+                       if(ui != is_upper_bound(i))
+                       {
+                               Q_i = Q.get_Q(i,l);
+                               if(ui)
+                                       for(k=0;k<l;k++)
+                                               G_bar[k] -= C_i * Q_i[k];
+                               else
+                                       for(k=0;k<l;k++)
+                                               G_bar[k] += C_i * Q_i[k];
+                       }
+
+                       if(uj != is_upper_bound(j))
+                       {
+                               Q_j = Q.get_Q(j,l);
+                               if(uj)
+                                       for(k=0;k<l;k++)
+                                               G_bar[k] -= C_j * Q_j[k];
+                               else
+                                       for(k=0;k<l;k++)
+                                               G_bar[k] += C_j * Q_j[k];
+                       }
+               }
+       }
+
+       if(iter >= max_iter)
+       {
+               if(active_size < l)
+               {
+                       // reconstruct the whole gradient to calculate 
objective value
+                       reconstruct_gradient();
+                       active_size = l;
+                       info("*");
+               }
+               info("\nWARNING: reaching max number of iterations");
+       }
+
+       // calculate rho
+
+       si->rho = calculate_rho();
+
+       // calculate objective value
+       {
+               double v = 0;
+               int i;
+               for(i=0;i<l;i++)
+                       v += alpha[i] * (G[i] + p[i]);
+
+               si->obj = v/2;
+       }
+
+       // put back the solution
+       {
+               for(int i=0;i<l;i++)
+                       alpha_[active_set[i]] = alpha[i];
+       }
+
+       // juggle everything back
+       /*{
+               for(int i=0;i<l;i++)
+                       while(active_set[i] != i)
+                               swap_index(i,active_set[i]);
+                               // or Q.swap_index(i,active_set[i]);
+       }*/
+
+       si->upper_bound_p = Cp;
+       si->upper_bound_n = Cn;
+
+       info("\noptimization finished, #iter = %d\n",iter);
+
+       delete[] p;
+       delete[] y;
+       delete[] alpha;
+       delete[] alpha_status;
+       delete[] active_set;
+       delete[] G;
+       delete[] G_bar;
+}
+
+// return 1 if already optimal, return 0 otherwise
+int Solver::select_working_set(int &out_i, int &out_j)
+{
+       // return i,j such that
+       // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
+       // j: minimizes the decrease of obj value
+       //    (if quadratic coefficeint <= 0, replace it with tau)
+       //    -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
+       
+       double Gmax = -INF;
+       double Gmax2 = -INF;
+       int Gmax_idx = -1;
+       int Gmin_idx = -1;
+       double obj_diff_min = INF;
+
+       for(int t=0;t<active_size;t++)
+               if(y[t]==+1)    
+               {
+                       if(!is_upper_bound(t))
+                               if(-G[t] >= Gmax)
+                               {
+                                       Gmax = -G[t];
+                                       Gmax_idx = t;
+                               }
+               }
+               else
+               {
+                       if(!is_lower_bound(t))
+                               if(G[t] >= Gmax)
+                               {
+                                       Gmax = G[t];
+                                       Gmax_idx = t;
+                               }
+               }
+
+       int i = Gmax_idx;
+       const Qfloat *Q_i = NULL;
+       if(i != -1) // NULL Q_i not accessed: Gmax=-INF if i=-1
+               Q_i = Q->get_Q(i,active_size);
+
+       for(int j=0;j<active_size;j++)
+       {
+               if(y[j]==+1)
+               {
+                       if (!is_lower_bound(j))
+                       {
+                               double grad_diff=Gmax+G[j];
+                               if (G[j] >= Gmax2)
+                                       Gmax2 = G[j];
+                               if (grad_diff > 0)
+                               {
+                                       double obj_diff; 
+                                       double quad_coef = 
QD[i]+QD[j]-2.0*y[i]*Q_i[j];
+                                       if (quad_coef > 0)
+                                               obj_diff = 
-(grad_diff*grad_diff)/quad_coef;
+                                       else
+                                               obj_diff = 
-(grad_diff*grad_diff)/TAU;
+
+                                       if (obj_diff <= obj_diff_min)
+                                       {
+                                               Gmin_idx=j;
+                                               obj_diff_min = obj_diff;
+                                       }
+                               }
+                       }
+               }
+               else
+               {
+                       if (!is_upper_bound(j))
+                       {
+                               double grad_diff= Gmax-G[j];
+                               if (-G[j] >= Gmax2)
+                                       Gmax2 = -G[j];
+                               if (grad_diff > 0)
+                               {
+                                       double obj_diff; 
+                                       double quad_coef = 
QD[i]+QD[j]+2.0*y[i]*Q_i[j];
+                                       if (quad_coef > 0)
+                                               obj_diff = 
-(grad_diff*grad_diff)/quad_coef;
+                                       else
+                                               obj_diff = 
-(grad_diff*grad_diff)/TAU;
+
+                                       if (obj_diff <= obj_diff_min)
+                                       {
+                                               Gmin_idx=j;
+                                               obj_diff_min = obj_diff;
+                                       }
+                               }
+                       }
+               }
+       }
+
+       if(Gmax+Gmax2 < eps)
+               return 1;
+
+       out_i = Gmax_idx;
+       out_j = Gmin_idx;
+       return 0;
+}
+
+bool Solver::be_shrunk(int i, double Gmax1, double Gmax2)
+{
+       if(is_upper_bound(i))
+       {
+               if(y[i]==+1)
+                       return(-G[i] > Gmax1);
+               else
+                       return(-G[i] > Gmax2);
+       }
+       else if(is_lower_bound(i))
+       {
+               if(y[i]==+1)
+                       return(G[i] > Gmax2);
+               else    
+                       return(G[i] > Gmax1);
+       }
+       else
+               return(false);
+}
+
+void Solver::do_shrinking()
+{
+       int i;
+       double Gmax1 = -INF;            // max { -y_i * grad(f)_i | i in 
I_up(\alpha) }
+       double Gmax2 = -INF;            // max { y_i * grad(f)_i | i in 
I_low(\alpha) }
+
+       // find maximal violating pair first
+       for(i=0;i<active_size;i++)
+       {
+               if(y[i]==+1)    
+               {
+                       if(!is_upper_bound(i))  
+                       {
+                               if(-G[i] >= Gmax1)
+                                       Gmax1 = -G[i];
+                       }
+                       if(!is_lower_bound(i))  
+                       {
+                               if(G[i] >= Gmax2)
+                                       Gmax2 = G[i];
+                       }
+               }
+               else    
+               {
+                       if(!is_upper_bound(i))  
+                       {
+                               if(-G[i] >= Gmax2)
+                                       Gmax2 = -G[i];
+                       }
+                       if(!is_lower_bound(i))  
+                       {
+                               if(G[i] >= Gmax1)
+                                       Gmax1 = G[i];
+                       }
+               }
+       }
+
+       if(unshrink == false && Gmax1 + Gmax2 <= eps*10) 
+       {
+               unshrink = true;
+               reconstruct_gradient();
+               active_size = l;
+               info("*");
+       }
+
+       for(i=0;i<active_size;i++)
+               if (be_shrunk(i, Gmax1, Gmax2))
+               {
+                       active_size--;
+                       while (active_size > i)
+                       {
+                               if (!be_shrunk(active_size, Gmax1, Gmax2))
+                               {
+                                       swap_index(i,active_size);
+                                       break;
+                               }
+                               active_size--;
+                       }
+               }
+}
+
+double Solver::calculate_rho()
+{
+       double r;
+       int nr_free = 0;
+       double ub = INF, lb = -INF, sum_free = 0;
+       for(int i=0;i<active_size;i++)
+       {
+               double yG = y[i]*G[i];
+
+               if(is_upper_bound(i))
+               {
+                       if(y[i]==-1)
+                               ub = min(ub,yG);
+                       else
+                               lb = max(lb,yG);
+               }
+               else if(is_lower_bound(i))
+               {
+                       if(y[i]==+1)
+                               ub = min(ub,yG);
+                       else
+                               lb = max(lb,yG);
+               }
+               else
+               {
+                       ++nr_free;
+                       sum_free += yG;
+               }
+       }
+
+       if(nr_free>0)
+               r = sum_free/nr_free;
+       else
+               r = (ub+lb)/2;
+
+       return r;
+}
+
+//
+// Solver for nu-svm classification and regression
+//
+// additional constraint: e^T \alpha = constant
+//
+class Solver_NU : public Solver
+{
+public:
+       Solver_NU() {}
+       void Solve(int l, const QMatrix& Q, const double *p, const schar *y,
+                  double *alpha, double Cp, double Cn, double eps,
+                  SolutionInfo* si, int shrinking)
+       {
+               this->si = si;
+               Solver::Solve(l,Q,p,y,alpha,Cp,Cn,eps,si,shrinking);
+       }
+private:
+       SolutionInfo *si;
+       int select_working_set(int &i, int &j);
+       double calculate_rho();
+       bool be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double 
Gmax4);
+       void do_shrinking();
+};
+
+// return 1 if already optimal, return 0 otherwise
+int Solver_NU::select_working_set(int &out_i, int &out_j)
+{
+       // return i,j such that y_i = y_j and
+       // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
+       // j: minimizes the decrease of obj value
+       //    (if quadratic coefficeint <= 0, replace it with tau)
+       //    -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
+
+       double Gmaxp = -INF;
+       double Gmaxp2 = -INF;
+       int Gmaxp_idx = -1;
+
+       double Gmaxn = -INF;
+       double Gmaxn2 = -INF;
+       int Gmaxn_idx = -1;
+
+       int Gmin_idx = -1;
+       double obj_diff_min = INF;
+
+       for(int t=0;t<active_size;t++)
+               if(y[t]==+1)
+               {
+                       if(!is_upper_bound(t))
+                               if(-G[t] >= Gmaxp)
+                               {
+                                       Gmaxp = -G[t];
+                                       Gmaxp_idx = t;
+                               }
+               }
+               else
+               {
+                       if(!is_lower_bound(t))
+                               if(G[t] >= Gmaxn)
+                               {
+                                       Gmaxn = G[t];
+                                       Gmaxn_idx = t;
+                               }
+               }
+
+       int ip = Gmaxp_idx;
+       int in = Gmaxn_idx;
+       const Qfloat *Q_ip = NULL;
+       const Qfloat *Q_in = NULL;
+       if(ip != -1) // NULL Q_ip not accessed: Gmaxp=-INF if ip=-1
+               Q_ip = Q->get_Q(ip,active_size);
+       if(in != -1)
+               Q_in = Q->get_Q(in,active_size);
+
+       for(int j=0;j<active_size;j++)
+       {
+               if(y[j]==+1)
+               {
+                       if (!is_lower_bound(j)) 
+                       {
+                               double grad_diff=Gmaxp+G[j];
+                               if (G[j] >= Gmaxp2)
+                                       Gmaxp2 = G[j];
+                               if (grad_diff > 0)
+                               {
+                                       double obj_diff; 
+                                       double quad_coef = 
QD[ip]+QD[j]-2*Q_ip[j];
+                                       if (quad_coef > 0)
+                                               obj_diff = 
-(grad_diff*grad_diff)/quad_coef;
+                                       else
+                                               obj_diff = 
-(grad_diff*grad_diff)/TAU;
+
+                                       if (obj_diff <= obj_diff_min)
+                                       {
+                                               Gmin_idx=j;
+                                               obj_diff_min = obj_diff;
+                                       }
+                               }
+                       }
+               }
+               else
+               {
+                       if (!is_upper_bound(j))
+                       {
+                               double grad_diff=Gmaxn-G[j];
+                               if (-G[j] >= Gmaxn2)
+                                       Gmaxn2 = -G[j];
+                               if (grad_diff > 0)
+                               {
+                                       double obj_diff; 
+                                       double quad_coef = 
QD[in]+QD[j]-2*Q_in[j];
+                                       if (quad_coef > 0)
+                                               obj_diff = 
-(grad_diff*grad_diff)/quad_coef;
+                                       else
+                                               obj_diff = 
-(grad_diff*grad_diff)/TAU;
+
+                                       if (obj_diff <= obj_diff_min)
+                                       {
+                                               Gmin_idx=j;
+                                               obj_diff_min = obj_diff;
+                                       }
+                               }
+                       }
+               }
+       }
+
+       if(max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps)
+               return 1;
+
+       if (y[Gmin_idx] == +1)
+               out_i = Gmaxp_idx;
+       else
+               out_i = Gmaxn_idx;
+       out_j = Gmin_idx;
+
+       return 0;
+}
+
+bool Solver_NU::be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, 
double Gmax4)
+{
+       if(is_upper_bound(i))
+       {
+               if(y[i]==+1)
+                       return(-G[i] > Gmax1);
+               else    
+                       return(-G[i] > Gmax4);
+       }
+       else if(is_lower_bound(i))
+       {
+               if(y[i]==+1)
+                       return(G[i] > Gmax2);
+               else    
+                       return(G[i] > Gmax3);
+       }
+       else
+               return(false);
+}
+
+void Solver_NU::do_shrinking()
+{
+       double Gmax1 = -INF;    // max { -y_i * grad(f)_i | y_i = +1, i in 
I_up(\alpha) }
+       double Gmax2 = -INF;    // max { y_i * grad(f)_i | y_i = +1, i in 
I_low(\alpha) }
+       double Gmax3 = -INF;    // max { -y_i * grad(f)_i | y_i = -1, i in 
I_up(\alpha) }
+       double Gmax4 = -INF;    // max { y_i * grad(f)_i | y_i = -1, i in 
I_low(\alpha) }
+
+       // find maximal violating pair first
+       int i;
+       for(i=0;i<active_size;i++)
+       {
+               if(!is_upper_bound(i))
+               {
+                       if(y[i]==+1)
+                       {
+                               if(-G[i] > Gmax1) Gmax1 = -G[i];
+                       }
+                       else    if(-G[i] > Gmax4) Gmax4 = -G[i];
+               }
+               if(!is_lower_bound(i))
+               {
+                       if(y[i]==+1)
+                       {       
+                               if(G[i] > Gmax2) Gmax2 = G[i];
+                       }
+                       else    if(G[i] > Gmax3) Gmax3 = G[i];
+               }
+       }
+
+       if(unshrink == false && max(Gmax1+Gmax2,Gmax3+Gmax4) <= eps*10) 
+       {
+               unshrink = true;
+               reconstruct_gradient();
+               active_size = l;
+       }
+
+       for(i=0;i<active_size;i++)
+               if (be_shrunk(i, Gmax1, Gmax2, Gmax3, Gmax4))
+               {
+                       active_size--;
+                       while (active_size > i)
+                       {
+                               if (!be_shrunk(active_size, Gmax1, Gmax2, 
Gmax3, Gmax4))
+                               {
+                                       swap_index(i,active_size);
+                                       break;
+                               }
+                               active_size--;
+                       }
+               }
+}
+
+double Solver_NU::calculate_rho()
+{
+       int nr_free1 = 0,nr_free2 = 0;
+       double ub1 = INF, ub2 = INF;
+       double lb1 = -INF, lb2 = -INF;
+       double sum_free1 = 0, sum_free2 = 0;
+
+       for(int i=0;i<active_size;i++)
+       {
+               if(y[i]==+1)
+               {
+                       if(is_upper_bound(i))
+                               lb1 = max(lb1,G[i]);
+                       else if(is_lower_bound(i))
+                               ub1 = min(ub1,G[i]);
+                       else
+                       {
+                               ++nr_free1;
+                               sum_free1 += G[i];
+                       }
+               }
+               else
+               {
+                       if(is_upper_bound(i))
+                               lb2 = max(lb2,G[i]);
+                       else if(is_lower_bound(i))
+                               ub2 = min(ub2,G[i]);
+                       else
+                       {
+                               ++nr_free2;
+                               sum_free2 += G[i];
+                       }
+               }
+       }
+
+       double r1,r2;
+       if(nr_free1 > 0)
+               r1 = sum_free1/nr_free1;
+       else
+               r1 = (ub1+lb1)/2;
+       
+       if(nr_free2 > 0)
+               r2 = sum_free2/nr_free2;
+       else
+               r2 = (ub2+lb2)/2;
+       
+       si->r = (r1+r2)/2;
+       return (r1-r2)/2;
+}
+
+//
+// Q matrices for various formulations
+//
+class SVC_Q: public Kernel
+{ 
+public:
+       SVC_Q(const svm_problem& prob, const svm_parameter& param, const schar 
*y_)
+       :Kernel(prob.l, prob.x, param)
+       {
+               clone(y,y_,prob.l);
+               cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
+               QD = new double[prob.l];
+               for(int i=0;i<prob.l;i++)
+                       QD[i] = (this->*kernel_function)(i,i);
+       }
+       
+       Qfloat *get_Q(int i, int len) const
+       {
+               Qfloat *data;
+               int start, j;
+               if((start = cache->get_data(i,&data,len)) < len)
+               {
+                       for(j=start;j<len;j++)
+                               data[j] = 
(Qfloat)(y[i]*y[j]*(this->*kernel_function)(i,j));
+               }
+               return data;
+       }
+
+       double *get_QD() const
+       {
+               return QD;
+       }
+
+       void swap_index(int i, int j) const
+       {
+               cache->swap_index(i,j);
+               Kernel::swap_index(i,j);
+               swap(y[i],y[j]);
+               swap(QD[i],QD[j]);
+       }
+
+       ~SVC_Q()
+       {
+               delete[] y;
+               delete cache;
+               delete[] QD;
+       }
+private:
+       schar *y;
+       Cache *cache;
+       double *QD;
+};
+
+class ONE_CLASS_Q: public Kernel
+{
+public:
+       ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param)
+       :Kernel(prob.l, prob.x, param)
+       {
+               cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
+               QD = new double[prob.l];
+               for(int i=0;i<prob.l;i++)
+                       QD[i] = (this->*kernel_function)(i,i);
+       }
+       
+       Qfloat *get_Q(int i, int len) const
+       {
+               Qfloat *data;
+               int start, j;
+               if((start = cache->get_data(i,&data,len)) < len)
+               {
+                       for(j=start;j<len;j++)
+                               data[j] = (Qfloat)(this->*kernel_function)(i,j);
+               }
+               return data;
+       }
+
+       double *get_QD() const
+       {
+               return QD;
+       }
+
+       void swap_index(int i, int j) const
+       {
+               cache->swap_index(i,j);
+               Kernel::swap_index(i,j);
+               swap(QD[i],QD[j]);
+       }
+
+       ~ONE_CLASS_Q()
+       {
+               delete cache;
+               delete[] QD;
+       }
+private:
+       Cache *cache;
+       double *QD;
+};
+
+class SVR_Q: public Kernel
+{ 
+public:
+       SVR_Q(const svm_problem& prob, const svm_parameter& param)
+       :Kernel(prob.l, prob.x, param)
+       {
+               l = prob.l;
+               cache = new Cache(l,(long int)(param.cache_size*(1<<20)));
+               QD = new double[2*l];
+               sign = new schar[2*l];
+               index = new int[2*l];
+               for(int k=0;k<l;k++)
+               {
+                       sign[k] = 1;
+                       sign[k+l] = -1;
+                       index[k] = k;
+                       index[k+l] = k;
+                       QD[k] = (this->*kernel_function)(k,k);
+                       QD[k+l] = QD[k];
+               }
+               buffer[0] = new Qfloat[2*l];
+               buffer[1] = new Qfloat[2*l];
+               next_buffer = 0;
+       }
+
+       void swap_index(int i, int j) const
+       {
+               swap(sign[i],sign[j]);
+               swap(index[i],index[j]);
+               swap(QD[i],QD[j]);
+       }
+       
+       Qfloat *get_Q(int i, int len) const
+       {
+               Qfloat *data;
+               int j, real_i = index[i];
+               if(cache->get_data(real_i,&data,l) < l)
+               {
+                       for(j=0;j<l;j++)
+                               data[j] = 
(Qfloat)(this->*kernel_function)(real_i,j);
+               }
+
+               // reorder and copy
+               Qfloat *buf = buffer[next_buffer];
+               next_buffer = 1 - next_buffer;
+               schar si = sign[i];
+               for(j=0;j<len;j++)
+                       buf[j] = (Qfloat) si * (Qfloat) sign[j] * 
data[index[j]];
+               return buf;
+       }
+
+       double *get_QD() const
+       {
+               return QD;
+       }
+
+       ~SVR_Q()
+       {
+               delete cache;
+               delete[] sign;
+               delete[] index;
+               delete[] buffer[0];
+               delete[] buffer[1];
+               delete[] QD;
+       }
+private:
+       int l;
+       Cache *cache;
+       schar *sign;
+       int *index;
+       mutable int next_buffer;
+       Qfloat *buffer[2];
+       double *QD;
+};
+
+//
+// construct and solve various formulations
+//
+static void solve_c_svc(
+       const svm_problem *prob, const svm_parameter* param,
+       double *alpha, Solver::SolutionInfo* si, double Cp, double Cn)
+{
+       int l = prob->l;
+       double *minus_ones = new double[l];
+       schar *y = new schar[l];
+
+       int i;
+
+       for(i=0;i<l;i++)
+       {
+               alpha[i] = 0;
+               minus_ones[i] = -1;
+               if(prob->y[i] > 0) y[i] = +1; else y[i] = -1;
+       }
+
+       Solver s;
+       s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
+               alpha, Cp, Cn, param->eps, si, param->shrinking);
+
+       double sum_alpha=0;
+       for(i=0;i<l;i++)
+               sum_alpha += alpha[i];
+
+       if (Cp==Cn)
+               info("nu = %f\n", sum_alpha/(Cp*prob->l));
+
+       for(i=0;i<l;i++)
+               alpha[i] *= y[i];
+
+       delete[] minus_ones;
+       delete[] y;
+}
+
+static void solve_nu_svc(
+       const svm_problem *prob, const svm_parameter *param,
+       double *alpha, Solver::SolutionInfo* si)
+{
+       int i;
+       int l = prob->l;
+       double nu = param->nu;
+
+       schar *y = new schar[l];
+
+       for(i=0;i<l;i++)
+               if(prob->y[i]>0)
+                       y[i] = +1;
+               else
+                       y[i] = -1;
+
+       double sum_pos = nu*l/2;
+       double sum_neg = nu*l/2;
+
+       for(i=0;i<l;i++)
+               if(y[i] == +1)
+               {
+                       alpha[i] = min(1.0,sum_pos);
+                       sum_pos -= alpha[i];
+               }
+               else
+               {
+                       alpha[i] = min(1.0,sum_neg);
+                       sum_neg -= alpha[i];
+               }
+
+       double *zeros = new double[l];
+
+       for(i=0;i<l;i++)
+               zeros[i] = 0;
+
+       Solver_NU s;
+       s.Solve(l, SVC_Q(*prob,*param,y), zeros, y,
+               alpha, 1.0, 1.0, param->eps, si,  param->shrinking);
+       double r = si->r;
+
+       info("C = %f\n",1/r);
+
+       for(i=0;i<l;i++)
+               alpha[i] *= y[i]/r;
+
+       si->rho /= r;
+       si->obj /= (r*r);
+       si->upper_bound_p = 1/r;
+       si->upper_bound_n = 1/r;
+
+       delete[] y;
+       delete[] zeros;
+}
+
+static void solve_one_class(
+       const svm_problem *prob, const svm_parameter *param,
+       double *alpha, Solver::SolutionInfo* si)
+{
+       int l = prob->l;
+       double *zeros = new double[l];
+       schar *ones = new schar[l];
+       int i;
+
+       int n = (int)(param->nu*prob->l);       // # of alpha's at upper bound
+
+       for(i=0;i<n;i++)
+               alpha[i] = 1;
+       if(n<prob->l)
+               alpha[n] = param->nu * prob->l - n;
+       for(i=n+1;i<l;i++)
+               alpha[i] = 0;
+
+       for(i=0;i<l;i++)
+       {
+               zeros[i] = 0;
+               ones[i] = 1;
+       }
+
+       Solver s;
+       s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones,
+               alpha, 1.0, 1.0, param->eps, si, param->shrinking);
+
+       delete[] zeros;
+       delete[] ones;
+}
+
+static void solve_epsilon_svr(
+       const svm_problem *prob, const svm_parameter *param,
+       double *alpha, Solver::SolutionInfo* si)
+{
+       int l = prob->l;
+       double *alpha2 = new double[2*l];
+       double *linear_term = new double[2*l];
+       schar *y = new schar[2*l];
+       int i;
+
+       for(i=0;i<l;i++)
+       {
+               alpha2[i] = 0;
+               linear_term[i] = param->p - prob->y[i];
+               y[i] = 1;
+
+               alpha2[i+l] = 0;
+               linear_term[i+l] = param->p + prob->y[i];
+               y[i+l] = -1;
+       }
+
+       Solver s;
+       s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
+               alpha2, param->C, param->C, param->eps, si, param->shrinking);
+
+       double sum_alpha = 0;
+       for(i=0;i<l;i++)
+       {
+               alpha[i] = alpha2[i] - alpha2[i+l];
+               sum_alpha += fabs(alpha[i]);
+       }
+       info("nu = %f\n",sum_alpha/(param->C*l));
+
+       delete[] alpha2;
+       delete[] linear_term;
+       delete[] y;
+}
+
+static void solve_nu_svr(
+       const svm_problem *prob, const svm_parameter *param,
+       double *alpha, Solver::SolutionInfo* si)
+{
+       int l = prob->l;
+       double C = param->C;
+       double *alpha2 = new double[2*l];
+       double *linear_term = new double[2*l];
+       schar *y = new schar[2*l];
+       int i;
+
+       double sum = C * param->nu * l / 2;
+       for(i=0;i<l;i++)
+       {
+               alpha2[i] = alpha2[i+l] = min(sum,C);
+               sum -= alpha2[i];
+
+               linear_term[i] = - prob->y[i];
+               y[i] = 1;
+
+               linear_term[i+l] = prob->y[i];
+               y[i+l] = -1;
+       }
+
+       Solver_NU s;
+       s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
+               alpha2, C, C, param->eps, si, param->shrinking);
+
+       info("epsilon = %f\n",-si->r);
+
+       for(i=0;i<l;i++)
+               alpha[i] = alpha2[i] - alpha2[i+l];
+
+       delete[] alpha2;
+       delete[] linear_term;
+       delete[] y;
+}
+
+//
+// decision_function
+//
+struct decision_function
+{
+       double *alpha;
+       double rho;     
+};
+
+static decision_function svm_train_one(
+       const svm_problem *prob, const svm_parameter *param,
+       double Cp, double Cn)
+{
+       double *alpha = Malloc(double,prob->l);
+       Solver::SolutionInfo si;
+       switch(param->svm_type)
+       {
+               case C_SVC:
+                       solve_c_svc(prob,param,alpha,&si,Cp,Cn);
+                       break;
+               case NU_SVC:
+                       solve_nu_svc(prob,param,alpha,&si);
+                       break;
+               case ONE_CLASS:
+                       solve_one_class(prob,param,alpha,&si);
+                       break;
+               case EPSILON_SVR:
+                       solve_epsilon_svr(prob,param,alpha,&si);
+                       break;
+               case NU_SVR:
+                       solve_nu_svr(prob,param,alpha,&si);
+                       break;
+       }
+
+       info("obj = %f, rho = %f\n",si.obj,si.rho);
+
+       // output SVs
+
+       int nSV = 0;
+       int nBSV = 0;
+       for(int i=0;i<prob->l;i++)
+       {
+               if(fabs(alpha[i]) > 0)
+               {
+                       ++nSV;
+                       if(prob->y[i] > 0)
+                       {
+                               if(fabs(alpha[i]) >= si.upper_bound_p)
+                                       ++nBSV;
+                       }
+                       else
+                       {
+                               if(fabs(alpha[i]) >= si.upper_bound_n)
+                                       ++nBSV;
+                       }
+               }
+       }
+
+       info("nSV = %d, nBSV = %d\n",nSV,nBSV);
+
+       decision_function f;
+       f.alpha = alpha;
+       f.rho = si.rho;
+       return f;
+}
+
+// Platt's binary SVM Probablistic Output: an improvement from Lin et al.
+static void sigmoid_train(
+       int l, const double *dec_values, const double *labels, 
+       double& A, double& B)
+{
+       double prior1=0, prior0 = 0;
+       int i;
+
+       for (i=0;i<l;i++)
+               if (labels[i] > 0) prior1+=1;
+               else prior0+=1;
+       
+       int max_iter=100;       // Maximal number of iterations
+       double min_step=1e-10;  // Minimal step taken in line search
+       double sigma=1e-12;     // For numerically strict PD of Hessian
+       double eps=1e-5;
+       double hiTarget=(prior1+1.0)/(prior1+2.0);
+       double loTarget=1/(prior0+2.0);
+       double *t=Malloc(double,l);
+       double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize;
+       double newA,newB,newf,d1,d2;
+       int iter; 
+       
+       // Initial Point and Initial Fun Value
+       A=0.0; B=log((prior0+1.0)/(prior1+1.0));
+       double fval = 0.0;
+
+       for (i=0;i<l;i++)
+       {
+               if (labels[i]>0) t[i]=hiTarget;
+               else t[i]=loTarget;
+               fApB = dec_values[i]*A+B;
+               if (fApB>=0)
+                       fval += t[i]*fApB + log(1+exp(-fApB));
+               else
+                       fval += (t[i] - 1)*fApB +log(1+exp(fApB));
+       }
+       for (iter=0;iter<max_iter;iter++)
+       {
+               // Update Gradient and Hessian (use H' = H + sigma I)
+               h11=sigma; // numerically ensures strict PD
+               h22=sigma;
+               h21=0.0;g1=0.0;g2=0.0;
+               for (i=0;i<l;i++)
+               {
+                       fApB = dec_values[i]*A+B;
+                       if (fApB >= 0)
+                       {
+                               p=exp(-fApB)/(1.0+exp(-fApB));
+                               q=1.0/(1.0+exp(-fApB));
+                       }
+                       else
+                       {
+                               p=1.0/(1.0+exp(fApB));
+                               q=exp(fApB)/(1.0+exp(fApB));
+                       }
+                       d2=p*q;
+                       h11+=dec_values[i]*dec_values[i]*d2;
+                       h22+=d2;
+                       h21+=dec_values[i]*d2;
+                       d1=t[i]-p;
+                       g1+=dec_values[i]*d1;
+                       g2+=d1;
+               }
+
+               // Stopping Criteria
+               if (fabs(g1)<eps && fabs(g2)<eps)
+                       break;
+
+               // Finding Newton direction: -inv(H') * g
+               det=h11*h22-h21*h21;
+               dA=-(h22*g1 - h21 * g2) / det;
+               dB=-(-h21*g1+ h11 * g2) / det;
+               gd=g1*dA+g2*dB;
+
+
+               stepsize = 1;           // Line Search
+               while (stepsize >= min_step)
+               {
+                       newA = A + stepsize * dA;
+                       newB = B + stepsize * dB;
+
+                       // New function value
+                       newf = 0.0;
+                       for (i=0;i<l;i++)
+                       {
+                               fApB = dec_values[i]*newA+newB;
+                               if (fApB >= 0)
+                                       newf += t[i]*fApB + log(1+exp(-fApB));
+                               else
+                                       newf += (t[i] - 1)*fApB 
+log(1+exp(fApB));
+                       }
+                       // Check sufficient decrease
+                       if (newf<fval+0.0001*stepsize*gd)
+                       {
+                               A=newA;B=newB;fval=newf;
+                               break;
+                       }
+                       else
+                               stepsize = stepsize / 2.0;
+               }
+
+               if (stepsize < min_step)
+               {
+                       info("Line search fails in two-class probability 
estimates\n");
+                       break;
+               }
+       }
+
+       if (iter>=max_iter)
+               info("Reaching maximal iterations in two-class probability 
estimates\n");
+       free(t);
+}
+
+static double sigmoid_predict(double decision_value, double A, double B)
+{
+       double fApB = decision_value*A+B;
+       // 1-p used later; avoid catastrophic cancellation
+       if (fApB >= 0)
+               return exp(-fApB)/(1.0+exp(-fApB));
+       else
+               return 1.0/(1+exp(fApB)) ;
+}
+
+// Method 2 from the multiclass_prob paper by Wu, Lin, and Weng
+static void multiclass_probability(int k, double **r, double *p)
+{
+       int t,j;
+       int iter = 0, max_iter=max(100,k);
+       double **Q=Malloc(double *,k);
+       double *Qp=Malloc(double,k);
+       double pQp, eps=0.005/k;
+       
+       for (t=0;t<k;t++)
+       {
+               p[t]=1.0/k;  // Valid if k = 1
+               Q[t]=Malloc(double,k);
+               Q[t][t]=0;
+               for (j=0;j<t;j++)
+               {
+                       Q[t][t]+=r[j][t]*r[j][t];
+                       Q[t][j]=Q[j][t];
+               }
+               for (j=t+1;j<k;j++)
+               {
+                       Q[t][t]+=r[j][t]*r[j][t];
+                       Q[t][j]=-r[j][t]*r[t][j];
+               }
+       }
+       for (iter=0;iter<max_iter;iter++)
+       {
+               // stopping condition, recalculate QP,pQP for numerical accuracy
+               pQp=0;
+               for (t=0;t<k;t++)
+               {
+                       Qp[t]=0;
+                       for (j=0;j<k;j++)
+                               Qp[t]+=Q[t][j]*p[j];
+                       pQp+=p[t]*Qp[t];
+               }
+               double max_error=0;
+               for (t=0;t<k;t++)
+               {
+                       double error=fabs(Qp[t]-pQp);
+                       if (error>max_error)
+                               max_error=error;
+               }
+               if (max_error<eps) break;
+               
+               for (t=0;t<k;t++)
+               {
+                       double diff=(-Qp[t]+pQp)/Q[t][t];
+                       p[t]+=diff;
+                       pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff);
+                       for (j=0;j<k;j++)
+                       {
+                               Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff);
+                               p[j]/=(1+diff);
+                       }
+               }
+       }
+       if (iter>=max_iter)
+               info("Exceeds max_iter in multiclass_prob\n");
+       for(t=0;t<k;t++) free(Q[t]);
+       free(Q);
+       free(Qp);
+}
+
+// Cross-validation decision values for probability estimates
+static void svm_binary_svc_probability(
+       const svm_problem *prob, const svm_parameter *param,
+       double Cp, double Cn, double& probA, double& probB)
+{
+       int i;
+       int nr_fold = 5;
+       int *perm = Malloc(int,prob->l);
+       double *dec_values = Malloc(double,prob->l);
+
+       // random shuffle
+       for(i=0;i<prob->l;i++) perm[i]=i;
+       for(i=0;i<prob->l;i++)
+       {
+               int j = i+rand()%(prob->l-i);
+               swap(perm[i],perm[j]);
+       }
+       for(i=0;i<nr_fold;i++)
+       {
+               int begin = i*prob->l/nr_fold;
+               int end = (i+1)*prob->l/nr_fold;
+               int j,k;
+               struct svm_problem subprob;
+
+               subprob.l = prob->l-(end-begin);
+               subprob.x = Malloc(struct svm_node*,subprob.l);
+               subprob.y = Malloc(double,subprob.l);
+                       
+               k=0;
+               for(j=0;j<begin;j++)
+               {
+                       subprob.x[k] = prob->x[perm[j]];
+                       subprob.y[k] = prob->y[perm[j]];
+                       ++k;
+               }
+               for(j=end;j<prob->l;j++)
+               {
+                       subprob.x[k] = prob->x[perm[j]];
+                       subprob.y[k] = prob->y[perm[j]];
+                       ++k;
+               }
+               int p_count=0,n_count=0;
+               for(j=0;j<k;j++)
+                       if(subprob.y[j]>0)
+                               p_count++;
+                       else
+                               n_count++;
+
+               if(p_count==0 && n_count==0)
+                       for(j=begin;j<end;j++)
+                               dec_values[perm[j]] = 0;
+               else if(p_count > 0 && n_count == 0)
+                       for(j=begin;j<end;j++)
+                               dec_values[perm[j]] = 1;
+               else if(p_count == 0 && n_count > 0)
+                       for(j=begin;j<end;j++)
+                               dec_values[perm[j]] = -1;
+               else
+               {
+                       svm_parameter subparam = *param;
+                       subparam.probability=0;
+                       subparam.C=1.0;
+                       subparam.nr_weight=2;
+                       subparam.weight_label = Malloc(int,2);
+                       subparam.weight = Malloc(double,2);
+                       subparam.weight_label[0]=+1;
+                       subparam.weight_label[1]=-1;
+                       subparam.weight[0]=Cp;
+                       subparam.weight[1]=Cn;
+                       struct svm_model *submodel = 
svm_train(&subprob,&subparam);
+                       for(j=begin;j<end;j++)
+                       {
+                               
svm_predict_values(submodel,prob->x[perm[j]],&(dec_values[perm[j]])); 
+                               // ensure +1 -1 order; reason not using CV 
subroutine
+                               dec_values[perm[j]] *= submodel->label[0];
+                       }               
+                       svm_free_and_destroy_model(&submodel);
+                       svm_destroy_param(&subparam);
+               }
+               free(subprob.x);
+               free(subprob.y);
+       }               
+       sigmoid_train(prob->l,dec_values,prob->y,probA,probB);
+       free(dec_values);
+       free(perm);
+}
+
+// Return parameter of a Laplace distribution 
+static double svm_svr_probability(
+       const svm_problem *prob, const svm_parameter *param)
+{
+       int i;
+       int nr_fold = 5;
+       double *ymv = Malloc(double,prob->l);
+       double mae = 0;
+
+       svm_parameter newparam = *param;
+       newparam.probability = 0;
+       svm_cross_validation(prob,&newparam,nr_fold,ymv);
+       for(i=0;i<prob->l;i++)
+       {
+               ymv[i]=prob->y[i]-ymv[i];
+               mae += fabs(ymv[i]);
+       }               
+       mae /= prob->l;
+       double std=sqrt(2*mae*mae);
+       int count=0;
+       mae=0;
+       for(i=0;i<prob->l;i++)
+               if (fabs(ymv[i]) > 5*std) 
+                       count=count+1;
+               else 
+                       mae+=fabs(ymv[i]);
+       mae /= (prob->l-count);
+       info("Prob. model for test data: target value = predicted value + 
z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n",mae);
+       free(ymv);
+       return mae;
+}
+
+
+// label: label name, start: begin of each class, count: #data of classes, 
perm: indices to the original data
+// perm, length l, must be allocated before calling this subroutine
+static void svm_group_classes(const svm_problem *prob, int *nr_class_ret, int 
**label_ret, int **start_ret, int **count_ret, int *perm)
+{
+       int l = prob->l;
+       int max_nr_class = 16;
+       int nr_class = 0;
+       int *label = Malloc(int,max_nr_class);
+       int *count = Malloc(int,max_nr_class);
+       int *data_label = Malloc(int,l);        
+       int i;
+
+       for(i=0;i<l;i++)
+       {
+               int this_label = (int)prob->y[i];
+               int j;
+               for(j=0;j<nr_class;j++)
+               {
+                       if(this_label == label[j])
+                       {
+                               ++count[j];
+                               break;
+                       }
+               }
+               data_label[i] = j;
+               if(j == nr_class)
+               {
+                       if(nr_class == max_nr_class)
+                       {
+                               max_nr_class *= 2;
+                               label = (int 
*)realloc(label,max_nr_class*sizeof(int));
+                               count = (int 
*)realloc(count,max_nr_class*sizeof(int));
+                       }
+                       label[nr_class] = this_label;
+                       count[nr_class] = 1;
+                       ++nr_class;
+               }
+       }
+
+       int *start = Malloc(int,nr_class);
+       start[0] = 0;
+       for(i=1;i<nr_class;i++)
+               start[i] = start[i-1]+count[i-1];
+       for(i=0;i<l;i++)
+       {
+               perm[start[data_label[i]]] = i;
+               ++start[data_label[i]];
+       }
+       start[0] = 0;
+       for(i=1;i<nr_class;i++)
+               start[i] = start[i-1]+count[i-1];
+
+       *nr_class_ret = nr_class;
+       *label_ret = label;
+       *start_ret = start;
+       *count_ret = count;
+       free(data_label);
+}
+
+//
+// Interface functions
+//
+svm_model *svm_train(const svm_problem *prob, const svm_parameter *param)
+{
+       svm_model *model = Malloc(svm_model,1);
+       model->param = *param;
+       model->free_sv = 0;     // XXX
+
+       if(param->svm_type == ONE_CLASS ||
+          param->svm_type == EPSILON_SVR ||
+          param->svm_type == NU_SVR)
+       {
+               // regression or one-class-svm
+               model->nr_class = 2;
+               model->label = NULL;
+               model->nSV = NULL;
+               model->probA = NULL; model->probB = NULL;
+               model->sv_coef = Malloc(double *,1);
+
+               if(param->probability && 
+                  (param->svm_type == EPSILON_SVR ||
+                   param->svm_type == NU_SVR))
+               {
+                       model->probA = Malloc(double,1);
+                       model->probA[0] = svm_svr_probability(prob,param);
+               }
+
+               decision_function f = svm_train_one(prob,param,0,0);
+               model->rho = Malloc(double,1);
+               model->rho[0] = f.rho;
+
+               int nSV = 0;
+               int i;
+               for(i=0;i<prob->l;i++)
+                       if(fabs(f.alpha[i]) > 0) ++nSV;
+               model->l = nSV;
+               model->SV = Malloc(svm_node *,nSV);
+               model->sv_coef[0] = Malloc(double,nSV);
+               int j = 0;
+               for(i=0;i<prob->l;i++)
+                       if(fabs(f.alpha[i]) > 0)
+                       {
+                               model->SV[j] = prob->x[i];
+                               model->sv_coef[0][j] = f.alpha[i];
+                               ++j;
+                       }               
+
+               free(f.alpha);
+       }
+       else
+       {
+               // classification
+               int l = prob->l;
+               int nr_class;
+               int *label = NULL;
+               int *start = NULL;
+               int *count = NULL;
+               int *perm = Malloc(int,l);
+
+               // group training data of the same class
+               svm_group_classes(prob,&nr_class,&label,&start,&count,perm);
+               if(nr_class == 1) 
+                       info("WARNING: training data in only one class. See 
README for details.\n");
+               
+               svm_node **x = Malloc(svm_node *,l);
+               int i;
+               for(i=0;i<l;i++)
+                       x[i] = prob->x[perm[i]];
+
+               // calculate weighted C
+
+               double *weighted_C = Malloc(double, nr_class);
+               for(i=0;i<nr_class;i++)
+                       weighted_C[i] = param->C;
+               for(i=0;i<param->nr_weight;i++)
+               {       
+                       int j;
+                       for(j=0;j<nr_class;j++)
+                               if(param->weight_label[i] == label[j])
+                                       break;
+                       if(j == nr_class)
+                               fprintf(stderr,"WARNING: class label %d 
specified in weight is not found\n", param->weight_label[i]);
+                       else
+                               weighted_C[j] *= param->weight[i];
+               }
+
+               // train k*(k-1)/2 models
+               
+               bool *nonzero = Malloc(bool,l);
+               for(i=0;i<l;i++)
+                       nonzero[i] = false;
+               decision_function *f = 
Malloc(decision_function,nr_class*(nr_class-1)/2);
+
+               double *probA=NULL,*probB=NULL;
+               if (param->probability)
+               {
+                       probA=Malloc(double,nr_class*(nr_class-1)/2);
+                       probB=Malloc(double,nr_class*(nr_class-1)/2);
+               }
+
+               int p = 0;
+               for(i=0;i<nr_class;i++)
+                       for(int j=i+1;j<nr_class;j++)
+                       {
+                               svm_problem sub_prob;
+                               int si = start[i], sj = start[j];
+                               int ci = count[i], cj = count[j];
+                               sub_prob.l = ci+cj;
+                               sub_prob.x = Malloc(svm_node *,sub_prob.l);
+                               sub_prob.y = Malloc(double,sub_prob.l);
+                               int k;
+                               for(k=0;k<ci;k++)
+                               {
+                                       sub_prob.x[k] = x[si+k];
+                                       sub_prob.y[k] = +1;
+                               }
+                               for(k=0;k<cj;k++)
+                               {
+                                       sub_prob.x[ci+k] = x[sj+k];
+                                       sub_prob.y[ci+k] = -1;
+                               }
+
+                               if(param->probability)
+                                       
svm_binary_svc_probability(&sub_prob,param,weighted_C[i],weighted_C[j],probA[p],probB[p]);
+
+                               f[p] = 
svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]);
+                               for(k=0;k<ci;k++)
+                                       if(!nonzero[si+k] && 
fabs(f[p].alpha[k]) > 0)
+                                               nonzero[si+k] = true;
+                               for(k=0;k<cj;k++)
+                                       if(!nonzero[sj+k] && 
fabs(f[p].alpha[ci+k]) > 0)
+                                               nonzero[sj+k] = true;
+                               free(sub_prob.x);
+                               free(sub_prob.y);
+                               ++p;
+                       }
+
+               // build output
+
+               model->nr_class = nr_class;
+               
+               model->label = Malloc(int,nr_class);
+               for(i=0;i<nr_class;i++)
+                       model->label[i] = label[i];
+               
+               model->rho = Malloc(double,nr_class*(nr_class-1)/2);
+               for(i=0;i<nr_class*(nr_class-1)/2;i++)
+                       model->rho[i] = f[i].rho;
+
+               if(param->probability)
+               {
+                       model->probA = Malloc(double,nr_class*(nr_class-1)/2);
+                       model->probB = Malloc(double,nr_class*(nr_class-1)/2);
+                       for(i=0;i<nr_class*(nr_class-1)/2;i++)
+                       {
+                               model->probA[i] = probA[i];
+                               model->probB[i] = probB[i];
+                       }
+               }
+               else
+               {
+                       model->probA=NULL;
+                       model->probB=NULL;
+               }
+
+               int total_sv = 0;
+               int *nz_count = Malloc(int,nr_class);
+               model->nSV = Malloc(int,nr_class);
+               for(i=0;i<nr_class;i++)
+               {
+                       int nSV = 0;
+                       for(int j=0;j<count[i];j++)
+                               if(nonzero[start[i]+j])
+                               {       
+                                       ++nSV;
+                                       ++total_sv;
+                               }
+                       model->nSV[i] = nSV;
+                       nz_count[i] = nSV;
+               }
+               
+               info("Total nSV = %d\n",total_sv);
+
+               model->l = total_sv;
+               model->SV = Malloc(svm_node *,total_sv);
+               p = 0;
+               for(i=0;i<l;i++)
+                       if(nonzero[i]) model->SV[p++] = x[i];
+
+               int *nz_start = Malloc(int,nr_class);
+               nz_start[0] = 0;
+               for(i=1;i<nr_class;i++)
+                       nz_start[i] = nz_start[i-1]+nz_count[i-1];
+
+               model->sv_coef = Malloc(double *,nr_class-1);
+               for(i=0;i<nr_class-1;i++)
+                       model->sv_coef[i] = Malloc(double,total_sv);
+
+               p = 0;
+               for(i=0;i<nr_class;i++)
+                       for(int j=i+1;j<nr_class;j++)
+                       {
+                               // classifier (i,j): coefficients with
+                               // i are in sv_coef[j-1][nz_start[i]...],
+                               // j are in sv_coef[i][nz_start[j]...]
+
+                               int si = start[i];
+                               int sj = start[j];
+                               int ci = count[i];
+                               int cj = count[j];
+                               
+                               int q = nz_start[i];
+                               int k;
+                               for(k=0;k<ci;k++)
+                                       if(nonzero[si+k])
+                                               model->sv_coef[j-1][q++] = 
f[p].alpha[k];
+                               q = nz_start[j];
+                               for(k=0;k<cj;k++)
+                                       if(nonzero[sj+k])
+                                               model->sv_coef[i][q++] = 
f[p].alpha[ci+k];
+                               ++p;
+                       }
+               
+               free(label);
+               free(probA);
+               free(probB);
+               free(count);
+               free(perm);
+               free(start);
+               free(x);
+               free(weighted_C);
+               free(nonzero);
+               for(i=0;i<nr_class*(nr_class-1)/2;i++)
+                       free(f[i].alpha);
+               free(f);
+               free(nz_count);
+               free(nz_start);
+       }
+       return model;
+}
+
+// Stratified cross validation
+void svm_cross_validation(const svm_problem *prob, const svm_parameter *param, 
int nr_fold, double *target)
+{
+       int i;
+       int *fold_start = Malloc(int,nr_fold+1);
+       int l = prob->l;
+       int *perm = Malloc(int,l);
+       int nr_class;
+
+       // stratified cv may not give leave-one-out rate
+       // Each class to l folds -> some folds may have zero elements
+       if((param->svm_type == C_SVC ||
+           param->svm_type == NU_SVC) && nr_fold < l)
+       {
+               int *start = NULL;
+               int *label = NULL;
+               int *count = NULL;
+               svm_group_classes(prob,&nr_class,&label,&start,&count,perm);
+
+               // random shuffle and then data grouped by fold using the array 
perm
+               int *fold_count = Malloc(int,nr_fold);
+               int c;
+               int *index = Malloc(int,l);
+               for(i=0;i<l;i++)
+                       index[i]=perm[i];
+               for (c=0; c<nr_class; c++) 
+                       for(i=0;i<count[c];i++)
+                       {
+                               int j = i+rand()%(count[c]-i);
+                               swap(index[start[c]+j],index[start[c]+i]);
+                       }
+               for(i=0;i<nr_fold;i++)
+               {
+                       fold_count[i] = 0;
+                       for (c=0; c<nr_class;c++)
+                               
fold_count[i]+=(i+1)*count[c]/nr_fold-i*count[c]/nr_fold;
+               }
+               fold_start[0]=0;
+               for (i=1;i<=nr_fold;i++)
+                       fold_start[i] = fold_start[i-1]+fold_count[i-1];
+               for (c=0; c<nr_class;c++)
+                       for(i=0;i<nr_fold;i++)
+                       {
+                               int begin = start[c]+i*count[c]/nr_fold;
+                               int end = start[c]+(i+1)*count[c]/nr_fold;
+                               for(int j=begin;j<end;j++)
+                               {
+                                       perm[fold_start[i]] = index[j];
+                                       fold_start[i]++;
+                               }
+                       }
+               fold_start[0]=0;
+               for (i=1;i<=nr_fold;i++)
+                       fold_start[i] = fold_start[i-1]+fold_count[i-1];
+               free(start);    
+               free(label);
+               free(count);    
+               free(index);
+               free(fold_count);
+       }
+       else
+       {
+               for(i=0;i<l;i++) perm[i]=i;
+               for(i=0;i<l;i++)
+               {
+                       int j = i+rand()%(l-i);
+                       swap(perm[i],perm[j]);
+               }
+               for(i=0;i<=nr_fold;i++)
+                       fold_start[i]=i*l/nr_fold;
+       }
+
+       for(i=0;i<nr_fold;i++)
+       {
+               int begin = fold_start[i];
+               int end = fold_start[i+1];
+               int j,k;
+               struct svm_problem subprob;
+
+               subprob.l = l-(end-begin);
+               subprob.x = Malloc(struct svm_node*,subprob.l);
+               subprob.y = Malloc(double,subprob.l);
+                       
+               k=0;
+               for(j=0;j<begin;j++)
+               {
+                       subprob.x[k] = prob->x[perm[j]];
+                       subprob.y[k] = prob->y[perm[j]];
+                       ++k;
+               }
+               for(j=end;j<l;j++)
+               {
+                       subprob.x[k] = prob->x[perm[j]];
+                       subprob.y[k] = prob->y[perm[j]];
+                       ++k;
+               }
+               struct svm_model *submodel = svm_train(&subprob,param);
+               if(param->probability && 
+                  (param->svm_type == C_SVC || param->svm_type == NU_SVC))
+               {
+                       double 
*prob_estimates=Malloc(double,svm_get_nr_class(submodel));
+                       for(j=begin;j<end;j++)
+                               target[perm[j]] = 
svm_predict_probability(submodel,prob->x[perm[j]],prob_estimates);
+                       free(prob_estimates);                   
+               }
+               else
+                       for(j=begin;j<end;j++)
+                               target[perm[j]] = 
svm_predict(submodel,prob->x[perm[j]]);
+               svm_free_and_destroy_model(&submodel);
+               free(subprob.x);
+               free(subprob.y);
+       }               
+       free(fold_start);
+       free(perm);     
+}
+
+
+int svm_get_svm_type(const svm_model *model)
+{
+       return model->param.svm_type;
+}
+
+int svm_get_nr_class(const svm_model *model)
+{
+       return model->nr_class;
+}
+
+void svm_get_labels(const svm_model *model, int* label)
+{
+       if (model->label != NULL)
+               for(int i=0;i<model->nr_class;i++)
+                       label[i] = model->label[i];
+}
+
+double svm_get_svr_probability(const svm_model *model)
+{
+       if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == 
NU_SVR) &&
+           model->probA!=NULL)
+               return model->probA[0];
+       else
+       {
+               fprintf(stderr,"Model doesn't contain information for SVR 
probability inference\n");
+               return 0;
+       }
+}
+
+double svm_predict_values(const svm_model *model, const svm_node *x, double* 
dec_values)
+{
+       int i;
+       if(model->param.svm_type == ONE_CLASS ||
+          model->param.svm_type == EPSILON_SVR ||
+          model->param.svm_type == NU_SVR)
+       {
+               double *sv_coef = model->sv_coef[0];
+               double sum = 0;
+               for(i=0;i<model->l;i++)
+                       sum += sv_coef[i] * 
Kernel::k_function(x,model->SV[i],model->param);
+               sum -= model->rho[0];
+               *dec_values = sum;
+
+               if(model->param.svm_type == ONE_CLASS)
+                       return (sum>0)?1:-1;
+               else
+                       return sum;
+       }
+       else
+       {
+               int nr_class = model->nr_class;
+               int l = model->l;
+               
+               double *kvalue = Malloc(double,l);
+               for(i=0;i<l;i++)
+                       kvalue[i] = 
Kernel::k_function(x,model->SV[i],model->param);
+
+               int *start = Malloc(int,nr_class);
+               start[0] = 0;
+               for(i=1;i<nr_class;i++)
+                       start[i] = start[i-1]+model->nSV[i-1];
+
+               int *vote = Malloc(int,nr_class);
+               for(i=0;i<nr_class;i++)
+                       vote[i] = 0;
+
+               int p=0;
+               for(i=0;i<nr_class;i++)
+                       for(int j=i+1;j<nr_class;j++)
+                       {
+                               double sum = 0;
+                               int si = start[i];
+                               int sj = start[j];
+                               int ci = model->nSV[i];
+                               int cj = model->nSV[j];
+                               
+                               int k;
+                               double *coef1 = model->sv_coef[j-1];
+                               double *coef2 = model->sv_coef[i];
+                               for(k=0;k<ci;k++)
+                                       sum += coef1[si+k] * kvalue[si+k];
+                               for(k=0;k<cj;k++)
+                                       sum += coef2[sj+k] * kvalue[sj+k];
+                               sum -= model->rho[p];
+                               dec_values[p] = sum;
+
+                               if(dec_values[p] > 0)
+                                       ++vote[i];
+                               else
+                                       ++vote[j];
+                               p++;
+                       }
+
+               int vote_max_idx = 0;
+               for(i=1;i<nr_class;i++)
+                       if(vote[i] > vote[vote_max_idx])
+                               vote_max_idx = i;
+
+               free(kvalue);
+               free(start);
+               free(vote);
+               return model->label[vote_max_idx];
+       }
+}
+
+double svm_predict(const svm_model *model, const svm_node *x)
+{
+       int nr_class = model->nr_class;
+       double *dec_values;
+       if(model->param.svm_type == ONE_CLASS ||
+          model->param.svm_type == EPSILON_SVR ||
+          model->param.svm_type == NU_SVR)
+               dec_values = Malloc(double, 1);
+       else 
+               dec_values = Malloc(double, nr_class*(nr_class-1)/2);
+       double pred_result = svm_predict_values(model, x, dec_values);
+       free(dec_values);
+       return pred_result;
+}
+
+double svm_predict_probability(
+       const svm_model *model, const svm_node *x, double *prob_estimates)
+{
+       if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) 
&&
+           model->probA!=NULL && model->probB!=NULL)
+       {
+               int i;
+               int nr_class = model->nr_class;
+               double *dec_values = Malloc(double, nr_class*(nr_class-1)/2);
+               svm_predict_values(model, x, dec_values);
+
+               double min_prob=1e-7;
+               double **pairwise_prob=Malloc(double *,nr_class);
+               for(i=0;i<nr_class;i++)
+                       pairwise_prob[i]=Malloc(double,nr_class);
+               int k=0;
+               for(i=0;i<nr_class;i++)
+                       for(int j=i+1;j<nr_class;j++)
+                       {
+                               
pairwise_prob[i][j]=min(max(sigmoid_predict(dec_values[k],model->probA[k],model->probB[k]),min_prob),1-min_prob);
+                               pairwise_prob[j][i]=1-pairwise_prob[i][j];
+                               k++;
+                       }
+               multiclass_probability(nr_class,pairwise_prob,prob_estimates);
+
+               int prob_max_idx = 0;
+               for(i=1;i<nr_class;i++)
+                       if(prob_estimates[i] > prob_estimates[prob_max_idx])
+                               prob_max_idx = i;
+               for(i=0;i<nr_class;i++)
+                       free(pairwise_prob[i]);
+               free(dec_values);
+               free(pairwise_prob);         
+               return model->label[prob_max_idx];
+       }
+       else 
+               return svm_predict(model, x);
+}
+
+static const char *svm_type_table[] =
+{
+       "c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL
+};
+
+static const char *kernel_type_table[]=
+{
+       "linear","polynomial","rbf","sigmoid","precomputed",NULL
+};
+
+int svm_save_model(const char *model_file_name, const svm_model *model)
+{
+       FILE *fp = fopen(model_file_name,"w");
+       if(fp==NULL) return -1;
+
+       char *old_locale = strdup(setlocale(LC_ALL, NULL));
+       setlocale(LC_ALL, "C");
+
+       const svm_parameter& param = model->param;
+
+       fprintf(fp,"svm_type %s\n", svm_type_table[param.svm_type]);
+       fprintf(fp,"kernel_type %s\n", kernel_type_table[param.kernel_type]);
+
+       if(param.kernel_type == POLY)
+               fprintf(fp,"degree %d\n", param.degree);
+
+       if(param.kernel_type == POLY || param.kernel_type == RBF || 
param.kernel_type == SIGMOID)
+               fprintf(fp,"gamma %g\n", param.gamma);
+
+       if(param.kernel_type == POLY || param.kernel_type == SIGMOID)
+               fprintf(fp,"coef0 %g\n", param.coef0);
+
+       int nr_class = model->nr_class;
+       int l = model->l;
+       fprintf(fp, "nr_class %d\n", nr_class);
+       fprintf(fp, "total_sv %d\n",l);
+       
+       {
+               fprintf(fp, "rho");
+               for(int i=0;i<nr_class*(nr_class-1)/2;i++)
+                       fprintf(fp," %g",model->rho[i]);
+               fprintf(fp, "\n");
+       }
+       
+       if(model->label)
+       {
+               fprintf(fp, "label");
+               for(int i=0;i<nr_class;i++)
+                       fprintf(fp," %d",model->label[i]);
+               fprintf(fp, "\n");
+       }
+
+       if(model->probA) // regression has probA only
+       {
+               fprintf(fp, "probA");
+               for(int i=0;i<nr_class*(nr_class-1)/2;i++)
+                       fprintf(fp," %g",model->probA[i]);
+               fprintf(fp, "\n");
+       }
+       if(model->probB)
+       {
+               fprintf(fp, "probB");
+               for(int i=0;i<nr_class*(nr_class-1)/2;i++)
+                       fprintf(fp," %g",model->probB[i]);
+               fprintf(fp, "\n");
+       }
+
+       if(model->nSV)
+       {
+               fprintf(fp, "nr_sv");
+               for(int i=0;i<nr_class;i++)
+                       fprintf(fp," %d",model->nSV[i]);
+               fprintf(fp, "\n");
+       }
+
+       fprintf(fp, "SV\n");
+       const double * const *sv_coef = model->sv_coef;
+       const svm_node * const *SV = model->SV;
+
+       for(int i=0;i<l;i++)
+       {
+               for(int j=0;j<nr_class-1;j++)
+                       fprintf(fp, "%.16g ",sv_coef[j][i]);
+
+               const svm_node *p = SV[i];
+
+               if(param.kernel_type == PRECOMPUTED)
+                       fprintf(fp,"0:%d ",(int)(p->value));
+               else
+                       while(p->index != -1)
+                       {
+                               fprintf(fp,"%d:%.8g ",p->index,p->value);
+                               p++;
+                       }
+               fprintf(fp, "\n");
+       }
+
+       setlocale(LC_ALL, old_locale);
+       free(old_locale);
+
+       if (ferror(fp) != 0 || fclose(fp) != 0) return -1;
+       else return 0;
+}
+
+static char *line = NULL;
+static int max_line_len;
+
+static char* readline(FILE *input)
+{
+       int len;
+
+       if(fgets(line,max_line_len,input) == NULL)
+               return NULL;
+
+       while(strrchr(line,'\n') == NULL)
+       {
+               max_line_len *= 2;
+               line = (char *) realloc(line,max_line_len);
+               len = (int) strlen(line);
+               if(fgets(line+len,max_line_len-len,input) == NULL)
+                       break;
+       }
+       return line;
+}
+
+svm_model *svm_load_model(const char *model_file_name)
+{
+       FILE *fp = fopen(model_file_name,"rb");
+       if(fp==NULL) return NULL;
+
+       char *old_locale = strdup(setlocale(LC_ALL, NULL));
+       setlocale(LC_ALL, "C");
+
+       // read parameters
+
+       svm_model *model = Malloc(svm_model,1);
+       svm_parameter& param = model->param;
+       model->rho = NULL;
+       model->probA = NULL;
+       model->probB = NULL;
+       model->label = NULL;
+       model->nSV = NULL;
+
+       char cmd[81];
+       while(1)
+       {
+               fscanf(fp,"%80s",cmd);
+
+               if(strcmp(cmd,"svm_type")==0)
+               {
+                       fscanf(fp,"%80s",cmd);
+                       int i;
+                       for(i=0;svm_type_table[i];i++)
+                       {
+                               if(strcmp(svm_type_table[i],cmd)==0)
+                               {
+                                       param.svm_type=i;
+                                       break;
+                               }
+                       }
+                       if(svm_type_table[i] == NULL)
+                       {
+                               fprintf(stderr,"unknown svm type.\n");
+                               
+                               setlocale(LC_ALL, old_locale);
+                               free(old_locale);
+                               free(model->rho);
+                               free(model->label);
+                               free(model->nSV);
+                               free(model);
+                               return NULL;
+                       }
+               }
+               else if(strcmp(cmd,"kernel_type")==0)
+               {               
+                       fscanf(fp,"%80s",cmd);
+                       int i;
+                       for(i=0;kernel_type_table[i];i++)
+                       {
+                               if(strcmp(kernel_type_table[i],cmd)==0)
+                               {
+                                       param.kernel_type=i;
+                                       break;
+                               }
+                       }
+                       if(kernel_type_table[i] == NULL)
+                       {
+                               fprintf(stderr,"unknown kernel function.\n");
+                               
+                               setlocale(LC_ALL, old_locale);
+                               free(old_locale);
+                               free(model->rho);
+                               free(model->label);
+                               free(model->nSV);
+                               free(model);
+                               return NULL;
+                       }
+               }
+               else if(strcmp(cmd,"degree")==0)
+                       fscanf(fp,"%d",&param.degree);
+               else if(strcmp(cmd,"gamma")==0)
+                       fscanf(fp,"%lf",&param.gamma);
+               else if(strcmp(cmd,"coef0")==0)
+                       fscanf(fp,"%lf",&param.coef0);
+               else if(strcmp(cmd,"nr_class")==0)
+                       fscanf(fp,"%d",&model->nr_class);
+               else if(strcmp(cmd,"total_sv")==0)
+                       fscanf(fp,"%d",&model->l);
+               else if(strcmp(cmd,"rho")==0)
+               {
+                       int n = model->nr_class * (model->nr_class-1)/2;
+                       model->rho = Malloc(double,n);
+                       for(int i=0;i<n;i++)
+                               fscanf(fp,"%lf",&model->rho[i]);
+               }
+               else if(strcmp(cmd,"label")==0)
+               {
+                       int n = model->nr_class;
+                       model->label = Malloc(int,n);
+                       for(int i=0;i<n;i++)
+                               fscanf(fp,"%d",&model->label[i]);
+               }
+               else if(strcmp(cmd,"probA")==0)
+               {
+                       int n = model->nr_class * (model->nr_class-1)/2;
+                       model->probA = Malloc(double,n);
+                       for(int i=0;i<n;i++)
+                               fscanf(fp,"%lf",&model->probA[i]);
+               }
+               else if(strcmp(cmd,"probB")==0)
+               {
+                       int n = model->nr_class * (model->nr_class-1)/2;
+                       model->probB = Malloc(double,n);
+                       for(int i=0;i<n;i++)
+                               fscanf(fp,"%lf",&model->probB[i]);
+               }
+               else if(strcmp(cmd,"nr_sv")==0)
+               {
+                       int n = model->nr_class;
+                       model->nSV = Malloc(int,n);
+                       for(int i=0;i<n;i++)
+                               fscanf(fp,"%d",&model->nSV[i]);
+               }
+               else if(strcmp(cmd,"SV")==0)
+               {
+                       while(1)
+                       {
+                               int c = getc(fp);
+                               if(c==EOF || c=='\n') break;    
+                       }
+                       break;
+               }
+               else
+               {
+                       fprintf(stderr,"unknown text in model file: 
[%s]\n",cmd);
+                       
+                       setlocale(LC_ALL, old_locale);
+                       free(old_locale);
+                       free(model->rho);
+                       free(model->label);
+                       free(model->nSV);
+                       free(model);
+                       return NULL;
+               }
+       }
+
+       // read sv_coef and SV
+
+       int elements = 0;
+       long pos = ftell(fp);
+
+       max_line_len = 1024;
+       line = Malloc(char,max_line_len);
+       char *p,*endptr,*idx,*val;
+
+       while(readline(fp)!=NULL)
+       {
+               p = strtok(line,":");
+               while(1)
+               {
+                       p = strtok(NULL,":");
+                       if(p == NULL)
+                               break;
+                       ++elements;
+               }
+       }
+       elements += model->l;
+
+       fseek(fp,pos,SEEK_SET);
+
+       int m = model->nr_class - 1;
+       int l = model->l;
+       model->sv_coef = Malloc(double *,m);
+       int i;
+       for(i=0;i<m;i++)
+               model->sv_coef[i] = Malloc(double,l);
+       model->SV = Malloc(svm_node*,l);
+       svm_node *x_space = NULL;
+       if(l>0) x_space = Malloc(svm_node,elements);
+
+       int j=0;
+       for(i=0;i<l;i++)
+       {
+               readline(fp);
+               model->SV[i] = &x_space[j];
+
+               p = strtok(line, " \t");
+               model->sv_coef[0][i] = strtod(p,&endptr);
+               for(int k=1;k<m;k++)
+               {
+                       p = strtok(NULL, " \t");
+                       model->sv_coef[k][i] = strtod(p,&endptr);
+               }
+
+               while(1)
+               {
+                       idx = strtok(NULL, ":");
+                       val = strtok(NULL, " \t");
+
+                       if(val == NULL)
+                               break;
+                       x_space[j].index = (int) strtol(idx,&endptr,10);
+                       x_space[j].value = strtod(val,&endptr);
+
+                       ++j;
+               }
+               x_space[j++].index = -1;
+       }
+       free(line);
+
+       setlocale(LC_ALL, old_locale);
+       free(old_locale);
+
+       if (ferror(fp) != 0 || fclose(fp) != 0)
+               return NULL;
+
+       model->free_sv = 1;     // XXX
+       return model;
+}
+
+void svm_free_model_content(svm_model* model_ptr)
+{
+       if(model_ptr->free_sv && model_ptr->l > 0 && model_ptr->SV != NULL)
+               free((void *)(model_ptr->SV[0]));
+       if(model_ptr->sv_coef)
+       {
+               for(int i=0;i<model_ptr->nr_class-1;i++)
+                       free(model_ptr->sv_coef[i]);
+       }
+
+       free(model_ptr->SV);
+       model_ptr->SV = NULL;
+
+       free(model_ptr->sv_coef);
+       model_ptr->sv_coef = NULL;
+
+       free(model_ptr->rho);
+       model_ptr->rho = NULL;
+
+       free(model_ptr->label);
+       model_ptr->label= NULL;
+
+       free(model_ptr->probA);
+       model_ptr->probA = NULL;
+
+       free(model_ptr->probB);
+       model_ptr->probB= NULL;
+
+       free(model_ptr->nSV);
+       model_ptr->nSV = NULL;
+}
+
+void svm_free_and_destroy_model(svm_model** model_ptr_ptr)
+{
+       if(model_ptr_ptr != NULL && *model_ptr_ptr != NULL)
+       {
+               svm_free_model_content(*model_ptr_ptr);
+               free(*model_ptr_ptr);
+               *model_ptr_ptr = NULL;
+       }
+}
+
+void svm_destroy_param(svm_parameter* param)
+{
+       free(param->weight_label);
+       free(param->weight);
+}
+
+const char *svm_check_parameter(const svm_problem *prob, const svm_parameter 
*param)
+{
+       // svm_type
+
+       int svm_type = param->svm_type;
+       if(svm_type != C_SVC &&
+          svm_type != NU_SVC &&
+          svm_type != ONE_CLASS &&
+          svm_type != EPSILON_SVR &&
+          svm_type != NU_SVR)
+               return "unknown svm type";
+       
+       // kernel_type, degree
+       
+       int kernel_type = param->kernel_type;
+       if(kernel_type != LINEAR &&
+          kernel_type != POLY &&
+          kernel_type != RBF &&
+          kernel_type != SIGMOID &&
+          kernel_type != PRECOMPUTED)
+               return "unknown kernel type";
+
+       if(param->gamma < 0)
+               return "gamma < 0";
+
+       if(param->degree < 0)
+               return "degree of polynomial kernel < 0";
+
+       // cache_size,eps,C,nu,p,shrinking
+
+       if(param->cache_size <= 0)
+               return "cache_size <= 0";
+
+       if(param->eps <= 0)
+               return "eps <= 0";
+
+       if(svm_type == C_SVC ||
+          svm_type == EPSILON_SVR ||
+          svm_type == NU_SVR)
+               if(param->C <= 0)
+                       return "C <= 0";
+
+       if(svm_type == NU_SVC ||
+          svm_type == ONE_CLASS ||
+          svm_type == NU_SVR)
+               if(param->nu <= 0 || param->nu > 1)
+                       return "nu <= 0 or nu > 1";
+
+       if(svm_type == EPSILON_SVR)
+               if(param->p < 0)
+                       return "p < 0";
+
+       if(param->shrinking != 0 &&
+          param->shrinking != 1)
+               return "shrinking != 0 and shrinking != 1";
+
+       if(param->probability != 0 &&
+          param->probability != 1)
+               return "probability != 0 and probability != 1";
+
+       if(param->probability == 1 &&
+          svm_type == ONE_CLASS)
+               return "one-class SVM probability output not supported yet";
+
+
+       // check whether nu-svc is feasible
+       
+       if(svm_type == NU_SVC)
+       {
+               int l = prob->l;
+               int max_nr_class = 16;
+               int nr_class = 0;
+               int *label = Malloc(int,max_nr_class);
+               int *count = Malloc(int,max_nr_class);
+
+               int i;
+               for(i=0;i<l;i++)
+               {
+                       int this_label = (int)prob->y[i];
+                       int j;
+                       for(j=0;j<nr_class;j++)
+                               if(this_label == label[j])
+                               {
+                                       ++count[j];
+                                       break;
+                               }
+                       if(j == nr_class)
+                       {
+                               if(nr_class == max_nr_class)
+                               {
+                                       max_nr_class *= 2;
+                                       label = (int 
*)realloc(label,max_nr_class*sizeof(int));
+                                       count = (int 
*)realloc(count,max_nr_class*sizeof(int));
+                               }
+                               label[nr_class] = this_label;
+                               count[nr_class] = 1;
+                               ++nr_class;
+                       }
+               }
+       
+               for(i=0;i<nr_class;i++)
+               {
+                       int n1 = count[i];
+                       for(int j=i+1;j<nr_class;j++)
+                       {
+                               int n2 = count[j];
+                               if(param->nu*(n1+n2)/2 > min(n1,n2))
+                               {
+                                       free(label);
+                                       free(count);
+                                       return "specified nu is infeasible";
+                               }
+                       }
+               }
+               free(label);
+               free(count);
+       }
+
+       return NULL;
+}
+
+int svm_check_probability_model(const svm_model *model)
+{
+       return ((model->param.svm_type == C_SVC || model->param.svm_type == 
NU_SVC) &&
+               model->probA!=NULL && model->probB!=NULL) ||
+               ((model->param.svm_type == EPSILON_SVR || model->param.svm_type 
== NU_SVR) &&
+                model->probA!=NULL);
+}
+
+void svm_set_print_string_function(void (*print_func)(const char *))
+{
+       if(print_func == NULL)
+               svm_print_string = &print_string_stdout;
+       else
+               svm_print_string = print_func;
+}
diff --git a/src/algorithms/svm.h b/src/algorithms/svm.h
new file mode 100644
index 0000000..2f60a57
--- /dev/null
+++ b/src/algorithms/svm.h
@@ -0,0 +1,101 @@
+#ifndef _LIBSVM_H
+#define _LIBSVM_H
+
+#define LIBSVM_VERSION 312
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+extern int libsvm_version;
+
+struct svm_node
+{
+       int index;
+       double value;
+};
+
+struct svm_problem
+{
+       int l;
+       double *y;
+       struct svm_node **x;
+};
+
+enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR };        /* svm_type */
+enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED }; /* kernel_type */
+
+struct svm_parameter
+{
+       int svm_type;
+       int kernel_type;
+       int degree;     /* for poly */
+       double gamma;   /* for poly/rbf/sigmoid */
+       double coef0;   /* for poly/sigmoid */
+
+       /* these are for training only */
+       double cache_size; /* in MB */
+       double eps;     /* stopping criteria */
+       double C;       /* for C_SVC, EPSILON_SVR and NU_SVR */
+       int nr_weight;          /* for C_SVC */
+       int *weight_label;      /* for C_SVC */
+       double* weight;         /* for C_SVC */
+       double nu;      /* for NU_SVC, ONE_CLASS, and NU_SVR */
+       double p;       /* for EPSILON_SVR */
+       int shrinking;  /* use the shrinking heuristics */
+       int probability; /* do probability estimates */
+};
+
+//
+// svm_model
+// 
+struct svm_model
+{
+       struct svm_parameter param;     /* parameter */
+       int nr_class;           /* number of classes, = 2 in regression/one 
class svm */
+       int l;                  /* total #SV */
+       struct svm_node **SV;           /* SVs (SV[l]) */
+       double **sv_coef;       /* coefficients for SVs in decision functions 
(sv_coef[k-1][l]) */
+       double *rho;            /* constants in decision functions 
(rho[k*(k-1)/2]) */
+       double *probA;          /* pariwise probability information */
+       double *probB;
+
+       /* for classification only */
+
+       int *label;             /* label of each class (label[k]) */
+       int *nSV;               /* number of SVs for each class (nSV[k]) */
+                               /* nSV[0] + nSV[1] + ... + nSV[k-1] = l */
+       /* XXX */
+       int free_sv;            /* 1 if svm_model is created by svm_load_model*/
+                               /* 0 if svm_model is created by svm_train */
+};
+
+struct svm_model *svm_train(const struct svm_problem *prob, const struct 
svm_parameter *param);
+void svm_cross_validation(const struct svm_problem *prob, const struct 
svm_parameter *param, int nr_fold, double *target);
+
+int svm_save_model(const char *model_file_name, const struct svm_model *model);
+struct svm_model *svm_load_model(const char *model_file_name);
+
+int svm_get_svm_type(const struct svm_model *model);
+int svm_get_nr_class(const struct svm_model *model);
+void svm_get_labels(const struct svm_model *model, int *label);
+double svm_get_svr_probability(const struct svm_model *model);
+
+double svm_predict_values(const struct svm_model *model, const struct svm_node 
*x, double* dec_values);
+double svm_predict(const struct svm_model *model, const struct svm_node *x);
+double svm_predict_probability(const struct svm_model *model, const struct 
svm_node *x, double* prob_estimates);
+
+void svm_free_model_content(struct svm_model *model_ptr);
+void svm_free_and_destroy_model(struct svm_model **model_ptr_ptr);
+void svm_destroy_param(struct svm_parameter *param);
+
+const char *svm_check_parameter(const struct svm_problem *prob, const struct 
svm_parameter *param);
+int svm_check_probability_model(const struct svm_model *model);
+
+void svm_set_print_string_function(void (*print_func)(const char *));
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _LIBSVM_H */
diff --git a/src/apps/Makefile.am b/src/apps/Makefile.am
index 3734a79..d8b1238 100644
--- a/src/apps/Makefile.am
+++ b/src/apps/Makefile.am
@@ -6,7 +6,7 @@ LDADD = $(GDAL_LDFLAGS) 
$(top_builddir)/src/algorithms/libalgorithms.a $(top_bui
 ###############################################################################
 
 # the program to build (the names of the final binaries)
-bin_PROGRAMS = pkinfo pkcrop pkreclass pkgetmask pksetmask pkcreatect 
pkdumpimg pkdumpogr pksieve pkstat pkstatogr pkegcs pkextract pkfillnodata 
pkfilter pkveg2shadow pkmosaic pkndvi pkpolygonize pkascii2img pkdiff 
pkclassify_svm
+bin_PROGRAMS = pkinfo pkcrop pkreclass pkgetmask pksetmask pkcreatect 
pkdumpimg pkdumpogr pksieve pkstat pkstatogr pkegcs pkextract pkfillnodata 
pkfilter pkdsm2shadow pkmosaic pkndvi pkpolygonize pkascii2img pkdiff 
pkclassify_svm
 if USE_FANN
 bin_PROGRAMS += pkclassify_nn
 pkclassify_nn_SOURCES = $(top_srcdir)/src/algorithms/myfann_cpp.h 
pkclassify_nn.h pkclassify_nn.cc
@@ -38,7 +38,7 @@ pkextract_SOURCES = pkextract.cc
 pkfillnodata_SOURCES = pkfillnodata.cc
 pkfilter_SOURCES = pkfilter.cc
 #pkfilter_LDADD = -lgdal $(AM_LDFLAGS) -lgdal
-pkveg2shadow_SOURCES = pkveg2shadow.cc
+pkdsm2shadow_SOURCES = pkdsm2shadow.cc
 pkmosaic_SOURCES = pkmosaic.cc
 pkndvi_SOURCES = pkndvi.cc
 pkpolygonize_SOURCES = pkpolygonize.cc
diff --git a/src/apps/Makefile.in b/src/apps/Makefile.in
index 4a8dbbe..f83de84 100644
--- a/src/apps/Makefile.in
+++ b/src/apps/Makefile.in
@@ -37,7 +37,7 @@ bin_PROGRAMS = pkinfo$(EXEEXT) pkcrop$(EXEEXT) 
pkreclass$(EXEEXT) \
        pkdumpimg$(EXEEXT) pkdumpogr$(EXEEXT) pksieve$(EXEEXT) \
        pkstat$(EXEEXT) pkstatogr$(EXEEXT) pkegcs$(EXEEXT) \
        pkextract$(EXEEXT) pkfillnodata$(EXEEXT) pkfilter$(EXEEXT) \
-       pkveg2shadow$(EXEEXT) pkmosaic$(EXEEXT) pkndvi$(EXEEXT) \
+       pkdsm2shadow$(EXEEXT) pkmosaic$(EXEEXT) pkndvi$(EXEEXT) \
        pkpolygonize$(EXEEXT) pkascii2img$(EXEEXT) pkdiff$(EXEEXT) \
        pkclassify_svm$(EXEEXT) $(am__EXEEXT_1) $(am__EXEEXT_2)
 @USE_FANN_TRUE@am__append_1 = pkclassify_nn
@@ -101,6 +101,12 @@ pkdiff_LDADD = $(LDADD)
 pkdiff_DEPENDENCIES = $(am__DEPENDENCIES_1) \
        $(top_builddir)/src/algorithms/libalgorithms.a \
        $(top_builddir)/src/imageclasses/libimageClasses.a
+am_pkdsm2shadow_OBJECTS = pkdsm2shadow.$(OBJEXT)
+pkdsm2shadow_OBJECTS = $(am_pkdsm2shadow_OBJECTS)
+pkdsm2shadow_LDADD = $(LDADD)
+pkdsm2shadow_DEPENDENCIES = $(am__DEPENDENCIES_1) \
+       $(top_builddir)/src/algorithms/libalgorithms.a \
+       $(top_builddir)/src/imageclasses/libimageClasses.a
 am_pkdumpimg_OBJECTS = pkdumpimg.$(OBJEXT)
 pkdumpimg_OBJECTS = $(am_pkdumpimg_OBJECTS)
 pkdumpimg_LDADD = $(LDADD)
@@ -195,12 +201,6 @@ pkstatogr_LDADD = $(LDADD)
 pkstatogr_DEPENDENCIES = $(am__DEPENDENCIES_1) \
        $(top_builddir)/src/algorithms/libalgorithms.a \
        $(top_builddir)/src/imageclasses/libimageClasses.a
-am_pkveg2shadow_OBJECTS = pkveg2shadow.$(OBJEXT)
-pkveg2shadow_OBJECTS = $(am_pkveg2shadow_OBJECTS)
-pkveg2shadow_LDADD = $(LDADD)
-pkveg2shadow_DEPENDENCIES = $(am__DEPENDENCIES_1) \
-       $(top_builddir)/src/algorithms/libalgorithms.a \
-       $(top_builddir)/src/imageclasses/libimageClasses.a
 DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir)
 depcomp = $(SHELL) $(top_srcdir)/depcomp
 am__depfiles_maybe = depfiles
@@ -216,23 +216,25 @@ CCLD = $(CC)
 LINK = $(CCLD) $(AM_CFLAGS) $(CFLAGS) $(AM_LDFLAGS) $(LDFLAGS) -o $@
 SOURCES = $(pkascii2img_SOURCES) $(pkclassify_nn_SOURCES) \
        $(pkclassify_svm_SOURCES) $(pkcreatect_SOURCES) \
-       $(pkcrop_SOURCES) $(pkdiff_SOURCES) $(pkdumpimg_SOURCES) \
-       $(pkdumpogr_SOURCES) $(pkegcs_SOURCES) $(pkextract_SOURCES) \
-       $(pkfillnodata_SOURCES) $(pkfilter_SOURCES) \
-       $(pkgetmask_SOURCES) $(pkinfo_SOURCES) $(pklas2img_SOURCES) \
-       $(pkmosaic_SOURCES) $(pkndvi_SOURCES) $(pkpolygonize_SOURCES) \
-       $(pkreclass_SOURCES) $(pksetmask_SOURCES) $(pksieve_SOURCES) \
-       $(pkstat_SOURCES) $(pkstatogr_SOURCES) $(pkveg2shadow_SOURCES)
-DIST_SOURCES = $(pkascii2img_SOURCES) \
-       $(am__pkclassify_nn_SOURCES_DIST) $(pkclassify_svm_SOURCES) \
-       $(pkcreatect_SOURCES) $(pkcrop_SOURCES) $(pkdiff_SOURCES) \
+       $(pkcrop_SOURCES) $(pkdiff_SOURCES) $(pkdsm2shadow_SOURCES) \
        $(pkdumpimg_SOURCES) $(pkdumpogr_SOURCES) $(pkegcs_SOURCES) \
        $(pkextract_SOURCES) $(pkfillnodata_SOURCES) \
        $(pkfilter_SOURCES) $(pkgetmask_SOURCES) $(pkinfo_SOURCES) \
+       $(pklas2img_SOURCES) $(pkmosaic_SOURCES) $(pkndvi_SOURCES) \
+       $(pkpolygonize_SOURCES) $(pkreclass_SOURCES) \
+       $(pksetmask_SOURCES) $(pksieve_SOURCES) $(pkstat_SOURCES) \
+       $(pkstatogr_SOURCES)
+DIST_SOURCES = $(pkascii2img_SOURCES) \
+       $(am__pkclassify_nn_SOURCES_DIST) $(pkclassify_svm_SOURCES) \
+       $(pkcreatect_SOURCES) $(pkcrop_SOURCES) $(pkdiff_SOURCES) \
+       $(pkdsm2shadow_SOURCES) $(pkdumpimg_SOURCES) \
+       $(pkdumpogr_SOURCES) $(pkegcs_SOURCES) $(pkextract_SOURCES) \
+       $(pkfillnodata_SOURCES) $(pkfilter_SOURCES) \
+       $(pkgetmask_SOURCES) $(pkinfo_SOURCES) \
        $(am__pklas2img_SOURCES_DIST) $(pkmosaic_SOURCES) \
        $(pkndvi_SOURCES) $(pkpolygonize_SOURCES) $(pkreclass_SOURCES) \
        $(pksetmask_SOURCES) $(pksieve_SOURCES) $(pkstat_SOURCES) \
-       $(pkstatogr_SOURCES) $(pkveg2shadow_SOURCES)
+       $(pkstatogr_SOURCES)
 ETAGS = etags
 CTAGS = ctags
 DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST)
@@ -371,7 +373,7 @@ pkextract_SOURCES = pkextract.cc
 pkfillnodata_SOURCES = pkfillnodata.cc
 pkfilter_SOURCES = pkfilter.cc
 #pkfilter_LDADD = -lgdal $(AM_LDFLAGS) -lgdal
-pkveg2shadow_SOURCES = pkveg2shadow.cc
+pkdsm2shadow_SOURCES = pkdsm2shadow.cc
 pkmosaic_SOURCES = pkmosaic.cc
 pkndvi_SOURCES = pkndvi.cc
 pkpolygonize_SOURCES = pkpolygonize.cc
@@ -467,6 +469,9 @@ pkcrop$(EXEEXT): $(pkcrop_OBJECTS) $(pkcrop_DEPENDENCIES)
 pkdiff$(EXEEXT): $(pkdiff_OBJECTS) $(pkdiff_DEPENDENCIES) 
        @rm -f pkdiff$(EXEEXT)
        $(CXXLINK) $(pkdiff_OBJECTS) $(pkdiff_LDADD) $(LIBS)
+pkdsm2shadow$(EXEEXT): $(pkdsm2shadow_OBJECTS) $(pkdsm2shadow_DEPENDENCIES) 
+       @rm -f pkdsm2shadow$(EXEEXT)
+       $(CXXLINK) $(pkdsm2shadow_OBJECTS) $(pkdsm2shadow_LDADD) $(LIBS)
 pkdumpimg$(EXEEXT): $(pkdumpimg_OBJECTS) $(pkdumpimg_DEPENDENCIES) 
        @rm -f pkdumpimg$(EXEEXT)
        $(CXXLINK) $(pkdumpimg_OBJECTS) $(pkdumpimg_LDADD) $(LIBS)
@@ -518,9 +523,6 @@ pkstat$(EXEEXT): $(pkstat_OBJECTS) $(pkstat_DEPENDENCIES)
 pkstatogr$(EXEEXT): $(pkstatogr_OBJECTS) $(pkstatogr_DEPENDENCIES) 
        @rm -f pkstatogr$(EXEEXT)
        $(CXXLINK) $(pkstatogr_OBJECTS) $(pkstatogr_LDADD) $(LIBS)
-pkveg2shadow$(EXEEXT): $(pkveg2shadow_OBJECTS) $(pkveg2shadow_DEPENDENCIES) 
-       @rm -f pkveg2shadow$(EXEEXT)
-       $(CXXLINK) $(pkveg2shadow_OBJECTS) $(pkveg2shadow_LDADD) $(LIBS)
 
 mostlyclean-compile:
        -rm -f *.$(OBJEXT)
@@ -534,6 +536,7 @@ distclean-compile:
 @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/pkcreatect.Po@am__quote@
 @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/pkcrop.Po@am__quote@
 @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/pkdiff.Po@am__quote@
+@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/pkdsm2shadow.Po@am__quote@
 @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/pkdumpimg.Po@am__quote@
 @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/pkdumpogr.Po@am__quote@
 @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/pkegcs.Po@am__quote@
@@ -551,7 +554,6 @@ distclean-compile:
 @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/pksieve.Po@am__quote@
 @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/pkstat.Po@am__quote@
 @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/pkstatogr.Po@am__quote@
-@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/pkveg2shadow.Po@am__quote@
 @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/svm.Po@am__quote@
 
 .cc.o:
diff --git a/src/apps/pkclassify_svm.cc b/src/apps/pkclassify_svm.cc
new file mode 100644
index 0000000..25eb555
--- /dev/null
+++ b/src/apps/pkclassify_svm.cc
@@ -0,0 +1,1037 @@
+/**********************************************************************
+pkclassify_svm.cc: classify raster image using Artificial Neural Network
+Copyright (C) 2008-2012 Pieter Kempeneers
+
+This file is part of pktools
+
+pktools is free software: you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation, either version 3 of the License, or
+(at your option) any later version.
+
+pktools is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with pktools.  If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+#include <vector>
+#include <map>
+#include <algorithm>
+#include "imageclasses/ImgReaderGdal.h"
+#include "imageclasses/ImgWriterGdal.h"
+#include "imageclasses/ImgReaderOgr.h"
+#include "imageclasses/ImgWriterOgr.h"
+#include "base/Optionpk.h"
+#include "algorithms/ConfusionMatrix.h"
+#include "algorithms/svm.h"
+#include "pkclassify_nn.h"
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
+
+int main(int argc, char *argv[])
+{
+  map<short,int> reclassMap;
+  vector<int> vreclass;
+  vector<double> priors;
+  
+  //--------------------------- command line options 
------------------------------------
+
+  std::string versionString="version ";
+  versionString+=VERSION;
+  versionString+=", Copyright (C) 2008-2012 Pieter Kempeneers.\n\
+   This program comes with ABSOLUTELY NO WARRANTY; for details type use option 
-h.\n\
+   This is free software, and you are welcome to redistribute it\n\
+   under certain conditions; use option --license for details.";
+  Optionpk<bool> version_opt("\0","version",versionString,false);
+  Optionpk<bool> license_opt("lic","license","show license information",false);
+  Optionpk<bool> help_opt("h","help","shows this help info",false);
+  Optionpk<bool> todo_opt("\0","todo","",false);
+  Optionpk<string> input_opt("i", "input", "input image"); 
+  Optionpk<string> training_opt("t", "training", "training shape file. A 
single shape file contains all training features (must be set as: B0, B1, 
B2,...) for all classes (class numbers identified by label option). Use 
multiple training files for bootstrap aggregation (alternative to the bag and 
bsize options, where a random subset is taken from a single training file)"); 
+  Optionpk<string> label_opt("\0", "label", "identifier for class label in 
training shape file.","label"); 
+  Optionpk<unsigned short> reclass_opt("\0", "rc", "reclass code (e.g. --rc=12 
--rc=23 to reclass first two classes to 12 and 23 resp.).", 0);
+  Optionpk<unsigned int> balance_opt("\0", "balance", "balance the input data 
to this number of samples for each class", 0);
+  Optionpk<int> minSize_opt("m", "min", "if number of training pixels is less 
then min, do not take this class into account", 0);
+  Optionpk<double> start_opt("s", "start", "start band sequence number (set to 
0)",0); 
+  Optionpk<double> end_opt("e", "end", "end band sequence number (set to 0 for 
all bands)", 0); 
+  Optionpk<double> offset_opt("\0", "offset", "offset value for each spectral 
band input features: refl[band]=(DN[band]-offset[band])/scale[band]", 0.0);
+  Optionpk<double> scale_opt("\0", "scale", "scale value for each spectral 
band input features: refl=(DN[band]-offset[band])/scale[band] (use 0 if scale 
min and max in each band to -1.0 and 1.0)", 0.0);
+  Optionpk<unsigned short> aggreg_opt("a", "aggreg", "how to combine 
aggregated classifiers, see also rc option (0: no aggregation, 1: sum rule, 2: 
max rule).",0);
+  Optionpk<double> priors_opt("p", "prior", "prior probabilities for each 
class (e.g., -p 0.3 -p 0.3 -p 0.2 )", 0.0); 
+
+
+  Optionpk<unsigned short> svm_type_opt("svmt", "svmtype", "type of SVM (0: 
C-SVC, 1: nu-SVC, 2: one-class SVM, 3: epsilon-SVR,        4: nu-SVR)",0);
+  Optionpk<unsigned short> kernel_type_opt("kt", "kerneltype", "type of kernel 
function (0: linear: u'*v, 1: polynomial: (gamma*u'*v + coef0)^degree, 2: 
radial basis function: exp(-gamma*|u-v|^2), 3: sigmoid: tanh(gamma*u'*v + 
coef0), 4: precomputed kernel (kernel values in training_set_file)",2);
+  Optionpk<unsigned short> kernel_degree_opt("kd", "kd", "degree in kernel 
function",3);
+  Optionpk<float> gamma_opt("g", "gamma", "gamma in kernel function",0);
+  Optionpk<float> coef0_opt("c0", "coef0", "coef0 in kernel function",0);
+  Optionpk<float> ccost_opt("cc", "ccost", "the parameter C of C-SVC, 
epsilon-SVR, and nu-SVR",1);
+  Optionpk<float> nu_opt("nu", "nu", "the parameter nu of nu-SVC, one-class 
SVM, and nu-SVR",0.5);
+  Optionpk<float> epsilon_loss_opt("eloss", "eloss", "the epsilon in loss 
function of epsilon-SVR",0.1);
+  Optionpk<int> cache_opt("cache", "cache", "cache memory size in MB",100);
+  Optionpk<float> epsilon_tol_opt("etol", "etol", "the tolerance of 
termination criterion",0.001);
+  Optionpk<bool> shrinking_opt("shrink", "shrink", "whether to use the 
shrinking heuristics",false);
+  Optionpk<bool> prob_est_opt("pe", "probest", "whether to train a SVC or SVR 
model for probability estimates",false);
+  // Optionpk<bool> weight_opt("wi", "wi", "set the parameter C of class i to 
weight*C, for C-SVC",true);
+  Optionpk<unsigned int> cv_opt("cv", "cv", "n-fold cross validation mode",0);
+  Optionpk<unsigned short> comb_opt("c", "comb", "how to combine bootstrap 
aggregation classifiers (0: sum rule, 1: product rule, 2: max rule). Also used 
to aggregate classes with rc option.",0); 
+  Optionpk<unsigned short> bag_opt("\0", "bag", "Number of bootstrap 
aggregations", 1);
+  Optionpk<int> bagSize_opt("\0", "bsize", "Percentage of features used from 
available training features for each bootstrap aggregation", 100);
+  Optionpk<string> classBag_opt("\0", "class", "output for each individual 
bootstrap aggregation");
+  Optionpk<string> mask_opt("\0", "mask", "mask image (see also mvalue 
option"); 
+  Optionpk<short> maskValue_opt("\0", "mvalue", "mask value(s) not to consider 
for classification (use negative values if only these values should be taken 
into account). Values will be taken over in classification image.", 0);
+  Optionpk<unsigned short> flag_opt("f", "flag", "flag to put where image is 
invalid.", 0);
+  Optionpk<string> output_opt("o", "output", "output classification image"); 
+  Optionpk<string>  oformat_opt("of", "oformat", "Output image format (see 
also gdal_translate). Empty string: inherit from input image");
+  Optionpk<string> option_opt("co", "co", "options: NAME=VALUE [-co 
COMPRESS=LZW] [-co INTERLEAVE=BAND]");
+  Optionpk<string> colorTable_opt("\0", "ct", "colour table in ascii format 
having 5 columns: id R G B ALFA (0: transparent, 255: solid)"); 
+  Optionpk<string> prob_opt("\0", "prob", "probability image."); 
+  Optionpk<short> verbose_opt("v", "verbose", "set to: 0 (results only), 1 
(confusion matrix), 2 (debug)",0);
+
+  version_opt.retrieveOption(argc,argv);
+  license_opt.retrieveOption(argc,argv);
+  help_opt.retrieveOption(argc,argv);
+  todo_opt.retrieveOption(argc,argv);
+
+  input_opt.retrieveOption(argc,argv);
+  training_opt.retrieveOption(argc,argv);
+  label_opt.retrieveOption(argc,argv);
+  reclass_opt.retrieveOption(argc,argv);
+  balance_opt.retrieveOption(argc,argv);
+  minSize_opt.retrieveOption(argc,argv);
+  start_opt.retrieveOption(argc,argv);
+  end_opt.retrieveOption(argc,argv);
+  offset_opt.retrieveOption(argc,argv);
+  scale_opt.retrieveOption(argc,argv);
+  aggreg_opt.retrieveOption(argc,argv);
+  priors_opt.retrieveOption(argc,argv);
+  svm_type_opt.retrieveOption(argc,argv);
+  kernel_type_opt.retrieveOption(argc,argv);
+  kernel_degree_opt.retrieveOption(argc,argv);
+  gamma_opt.retrieveOption(argc,argv);
+  coef0_opt.retrieveOption(argc,argv);
+  ccost_opt.retrieveOption(argc,argv);
+  nu_opt.retrieveOption(argc,argv);
+  epsilon_loss_opt.retrieveOption(argc,argv);
+  cache_opt.retrieveOption(argc,argv);
+  epsilon_tol_opt.retrieveOption(argc,argv);
+  shrinking_opt.retrieveOption(argc,argv);
+  prob_est_opt.retrieveOption(argc,argv);
+  cv_opt.retrieveOption(argc,argv);
+  comb_opt.retrieveOption(argc,argv);
+  bag_opt.retrieveOption(argc,argv);
+  bagSize_opt.retrieveOption(argc,argv);
+  classBag_opt.retrieveOption(argc,argv);
+  mask_opt.retrieveOption(argc,argv);
+  maskValue_opt.retrieveOption(argc,argv);
+  flag_opt.retrieveOption(argc,argv);
+  output_opt.retrieveOption(argc,argv);
+  oformat_opt.retrieveOption(argc,argv);
+  colorTable_opt.retrieveOption(argc,argv);
+  option_opt.retrieveOption(argc,argv);
+  prob_opt.retrieveOption(argc,argv);
+  verbose_opt.retrieveOption(argc,argv);
+
+  if(version_opt[0]||todo_opt[0]){
+    std::cout << version_opt.getHelp() << std::endl;
+    std::cout << "todo: " << todo_opt.getHelp() << std::endl;
+    exit(0);
+  }
+  if(license_opt[0]){
+    std::cout << Optionpk<bool>::getGPLv3License() << std::endl;
+    exit(0);
+  }
+  if(help_opt[0]){
+    std::cout << "usage: pkclassify_nn -i testimage -o outputimage -t training 
[OPTIONS]" << std::endl;
+    exit(0);
+  }
+
+  if(verbose_opt[0]>=1){
+    std::cout << "image filename: " << input_opt[0] << std::endl;
+    if(mask_opt.size())
+      std::cout << "mask filename: " << mask_opt[0] << std::endl;
+    if(training_opt[0].size()){
+      std::cout << "training shape file: " << std::endl;
+      for(int ifile=0;ifile<training_opt.size();++ifile)
+        std::cout << training_opt[ifile] << std::endl;
+    }
+    else
+      cerr << "no training file set!" << std::endl;
+    std::cout << "verbose: " << verbose_opt[0] << std::endl;
+  }
+  unsigned short nbag=(training_opt.size()>1)?training_opt.size():bag_opt[0];
+  if(verbose_opt[0]>=1)
+    std::cout << "number of bootstrap aggregations: " << nbag << std::endl;
+  
+  unsigned int totalSamples=0;
+  int nreclass=0;
+  vector<int> vcode;//unique class codes in recode string
+  // vector<FANN::neural_net> net(nbag);//the neural network
+  vector<struct svm_model*> svm(nbag);
+  vector<struct svm_parameter> param(nbag);
+
+  unsigned int nclass=0;
+  int nband=0;
+  int startBand=2;//first two bands represent X and Y pos
+
+  vector< vector<double> > offset(nbag);
+  vector< vector<double> > scale(nbag);
+  vector< Vector2d<float> > trainingPixels;//[class][sample][band]
+
+  if(reclass_opt.size()>1){
+    vreclass.resize(reclass_opt.size());
+    for(int iclass=0;iclass<reclass_opt.size();++iclass){
+      reclassMap[iclass]=reclass_opt[iclass];
+      vreclass[iclass]=reclass_opt[iclass];
+    }
+  }
+  if(priors_opt.size()>1){//priors from argument list
+    priors.resize(priors_opt.size());
+    double normPrior=0;
+    for(int iclass=0;iclass<priors_opt.size();++iclass){
+      priors[iclass]=priors_opt[iclass];
+      normPrior+=priors[iclass];
+    }
+    //normalize
+    for(int iclass=0;iclass<priors_opt.size();++iclass)
+      priors[iclass]/=normPrior;
+  }
+
+  //----------------------------------- Training 
-------------------------------
+  vector<struct svm_problem> prob(nbag);
+  vector<struct svm_node *> x_space(nbag);
+  // struct svm_node *x_space;
+  vector<string> fields;
+  for(int ibag=0;ibag<nbag;++ibag){
+    //organize training data
+    if(ibag<training_opt.size()){//if bag contains new training pixels
+      trainingPixels.clear();
+      map<int,Vector2d<float> > trainingMap;
+      if(verbose_opt[0]>=1)
+        std::cout << "reading imageShape file " << training_opt[0] << 
std::endl;
+      try{
+        
totalSamples=readDataImageShape(training_opt[ibag],trainingMap,fields,start_opt[0],end_opt[0],label_opt[0],verbose_opt[0]);
+        if(trainingMap.size()<2){
+          string errorstring="Error: could not read at least two classes from 
training file";
+          throw(errorstring);
+        }
+      }
+      catch(string error){
+        cerr << error << std::endl;
+        exit(1);
+      }
+      catch(...){
+        cerr << "error catched" << std::endl;
+        exit(1);
+      }
+      //delete class 0
+      if(verbose_opt[0]>=1)
+        std::cout << "erasing class 0 from training set (" << 
trainingMap[0].size() << " from " << totalSamples << ") samples" << std::endl;
+      totalSamples-=trainingMap[0].size();
+      trainingMap.erase(0);
+      //convert map to vector
+      short iclass=0;
+      if(reclass_opt.size()==1){//no reclass option, read classes from shape
+        reclassMap.clear();
+        vreclass.clear();
+      }
+      if(verbose_opt[0]>1)
+        std::cout << "training pixels: " << std::endl;
+      map<int,Vector2d<float> >::iterator mapit=trainingMap.begin();
+      while(mapit!=trainingMap.end()){
+//       for(map<int,Vector2d<float> >::const_iterator 
mapit=trainingMap.begin();mapit!=trainingMap.end();++mapit){
+        //delete small classes
+        if((mapit->second).size()<minSize_opt[0]){
+          trainingMap.erase(mapit);
+          continue;
+          //todo: beware of reclass option: delete this reclass if no samples 
are left in this classes!!
+        }
+        if(reclass_opt.size()==1){//no reclass option, read classes from shape
+          reclassMap[iclass]=(mapit->first);
+          vreclass.push_back(mapit->first);
+        }
+        trainingPixels.push_back(mapit->second);
+        if(verbose_opt[0]>1)
+          std::cout << mapit->first << ": " << (mapit->second).size() << " 
samples" << std::endl;
+        ++iclass;
+        ++mapit;
+      }
+      if(!ibag){
+        nclass=trainingPixels.size();
+        nband=trainingPixels[0][0].size()-2;//X and 
Y//trainingPixels[0][0].size();
+      }
+      else{
+        assert(nclass==trainingPixels.size());
+        assert(nband==trainingPixels[0][0].size()-2);
+      }
+      assert(reclassMap.size()==nclass);
+
+      //do not remove outliers here: could easily be obtained through ogr2ogr 
-where 'B2<110' output.shp input.shp
+      //balance training data
+      if(balance_opt[0]>0){
+        if(random)
+          srand(time(NULL));
+        totalSamples=0;
+        for(int iclass=0;iclass<nclass;++iclass){
+          if(trainingPixels[iclass].size()>balance_opt[0]){
+            while(trainingPixels[iclass].size()>balance_opt[0]){
+              int index=rand()%trainingPixels[iclass].size();
+              
trainingPixels[iclass].erase(trainingPixels[iclass].begin()+index);
+            }
+          }
+          else{
+            int oldsize=trainingPixels[iclass].size();
+            for(int 
isample=trainingPixels[iclass].size();isample<balance_opt[0];++isample){
+              int index = rand()%oldsize;
+              trainingPixels[iclass].push_back(trainingPixels[iclass][index]);
+            }
+          }
+          totalSamples+=trainingPixels[iclass].size();
+        }
+        assert(totalSamples==nclass*balance_opt[0]);
+      }
+    
+      //set scale and offset
+      offset[ibag].resize(nband);
+      scale[ibag].resize(nband);
+      if(offset_opt.size()>1)
+        assert(offset_opt.size()==nband);
+      if(scale_opt.size()>1)
+        assert(scale_opt.size()==nband);
+      Histogram hist;
+      for(int iband=0;iband<nband;++iband){
+        if(verbose_opt[0]>=1)
+          std::cout << "scaling for band" << iband << std::endl;
+        
offset[ibag][iband]=(offset_opt.size()==1)?offset_opt[0]:offset_opt[iband];
+        scale[ibag][iband]=(scale_opt.size()==1)?scale_opt[0]:scale_opt[iband];
+        //search for min and maximum
+        if(scale[ibag][iband]<=0){
+          float theMin=trainingPixels[0][0][iband+startBand];
+          float theMax=trainingPixels[0][0][iband+startBand];
+          for(int iclass=0;iclass<nclass;++iclass){
+            for(int isample=0;isample<trainingPixels[iclass].size();++isample){
+              if(theMin>trainingPixels[iclass][isample][iband+startBand])
+                theMin=trainingPixels[iclass][isample][iband+startBand];
+              if(theMax<trainingPixels[iclass][isample][iband+startBand])
+                theMax=trainingPixels[iclass][isample][iband+startBand];
+            }
+          }
+          offset[ibag][iband]=theMin+(theMax-theMin)/2.0;
+          scale[ibag][iband]=(theMax-theMin)/2.0;
+          if(verbose_opt[0]>=1){
+            std::cout << "Extreme image values for band " << iband << ": [" << 
theMin << "," << theMax << "]" << std::endl;
+            std::cout << "Using offset, scale: " << offset[ibag][iband] << ", 
" << scale[ibag][iband] << std::endl;
+            std::cout << "scaled values for band " << iband << ": [" << 
(theMin-offset[ibag][iband])/scale[ibag][iband] << "," << 
(theMax-offset[ibag][iband])/scale[ibag][iband] << "]" << std::endl;
+          }
+        }
+      }
+    }
+    else{//use same offset and scale 
+      offset[ibag].resize(nband);
+      scale[ibag].resize(nband);
+      for(int iband=0;iband<nband;++iband){
+        offset[ibag][iband]=offset[0][iband];
+        scale[ibag][iband]=scale[0][iband];
+      }
+    }
+      
+    if(!ibag){
+      //recode vreclass to ordered vector, starting from 0 to nreclass
+      vcode.clear();
+      if(verbose_opt[0]>=1){
+        std::cout << "before recoding: " << std::endl;
+        for(int iclass = 0; iclass < vreclass.size(); iclass++)
+          std::cout << " " << vreclass[iclass];
+        std::cout << std::endl; 
+      }
+      vector<int> vord=vreclass;//ordered vector, starting from 0 to nreclass
+      int iclass=0;
+      map<short,int> mreclass;
+      for(int ic=0;ic<vreclass.size();++ic){
+        if(mreclass.find(vreclass[ic])==mreclass.end())
+          mreclass[vreclass[ic]]=iclass++;
+      }
+      for(int ic=0;ic<vreclass.size();++ic)
+        vord[ic]=mreclass[vreclass[ic]];
+      //construct uniqe class codes
+      while(!vreclass.empty()){
+        vcode.push_back(*(vreclass.begin()));
+        //delete all these entries from vreclass
+        vector<int>::iterator vit;
+        
while((vit=find(vreclass.begin(),vreclass.end(),vcode.back()))!=vreclass.end())
+          vreclass.erase(vit);
+      }
+      if(verbose_opt[0]>=1){
+        std::cout << "recode values: " << std::endl;
+        for(int icode=0;icode<vcode.size();++icode)
+          std::cout << vcode[icode] << " ";
+        std::cout << std::endl;
+      }
+      vreclass=vord;
+      if(verbose_opt[0]>=1){
+        std::cout << "after recoding: " << std::endl;
+        for(int iclass = 0; iclass < vord.size(); iclass++)
+          std::cout << " " << vord[iclass];
+        std::cout << std::endl; 
+      }
+      
+      vector<int> vuniqueclass=vreclass;
+      //remove duplicate elements from vuniqueclass
+      sort( vuniqueclass.begin(), vuniqueclass.end() );
+      vuniqueclass.erase( unique( vuniqueclass.begin(), vuniqueclass.end() ), 
vuniqueclass.end() );
+      nreclass=vuniqueclass.size();
+      if(verbose_opt[0]>=1){
+        std::cout << "unique classes: " << std::endl;
+        for(int iclass = 0; iclass < vuniqueclass.size(); iclass++)
+          std::cout << " " << vuniqueclass[iclass];
+        std::cout << std::endl; 
+        std::cout << "number of reclasses: " << nreclass << std::endl;
+      }
+    
+      if(priors_opt.size()==1){//default: equal priors for each class
+        priors.resize(nclass);
+        for(int iclass=0;iclass<nclass;++iclass)
+          priors[iclass]=1.0/nclass;
+      }
+      assert(priors_opt.size()==1||priors_opt.size()==nclass);
+    
+      if(verbose_opt[0]>=1){
+        std::cout << "number of bands: " << nband << std::endl;
+        std::cout << "number of classes: " << nclass << std::endl;
+        std::cout << "priors:";
+        for(int iclass=0;iclass<nclass;++iclass)
+          std::cout << " " << priors[iclass];
+        std::cout << std::endl;
+      }
+    }//if(!ibag)
+
+    //Calculate features of trainig set
+    vector< Vector2d<float> > trainingFeatures(nclass);
+    for(int iclass=0;iclass<nclass;++iclass){
+      int nctraining=0;
+      if(verbose_opt[0]>=1)
+        std::cout << "calculating features for class " << iclass << std::endl;
+      if(random)
+        srand(time(NULL));
+      nctraining=(bagSize_opt[0]<100)? 
trainingPixels[iclass].size()/100.0*bagSize_opt[0] : 
trainingPixels[iclass].size();//bagSize_opt[0] given in % of training size
+      if(nctraining<=0)
+        nctraining=1;
+      assert(nctraining<=trainingPixels[iclass].size());
+      int index=0;
+      if(bagSize_opt[0]<100)
+        
random_shuffle(trainingPixels[iclass].begin(),trainingPixels[iclass].end());
+      
+      trainingFeatures[iclass].resize(nctraining);
+      for(int isample=0;isample<nctraining;++isample){
+        //scale pixel values according to scale and offset!!!
+        for(int iband=0;iband<nband;++iband){
+          float value=trainingPixels[iclass][isample][iband+startBand];
+          
trainingFeatures[iclass][isample].push_back((value-offset[ibag][iband])/scale[ibag][iband]);
+        }
+      }
+      assert(trainingFeatures[iclass].size()==nctraining);
+    }
+    
+    unsigned int nFeatures=trainingFeatures[0][0].size();
+    unsigned int ntraining=0;
+    for(int iclass=0;iclass<nclass;++iclass){
+      if(verbose_opt[0]>=1)
+        std::cout << "training sample size for class " << vcode[iclass] << ": 
" << trainingFeatures[iclass].size() << std::endl;
+      ntraining+=trainingFeatures[iclass].size();
+    }
+    // vector<struct svm_problem> prob(ibag);
+    // vector<struct svm_node *> x_space(ibag);
+    prob[ibag].l=ntraining;
+    prob[ibag].y = Malloc(double,prob[ibag].l);
+    prob[ibag].x = Malloc(struct svm_node *,prob[ibag].l);
+    x_space[ibag] = Malloc(struct svm_node,(nFeatures+1)*ntraining);
+    unsigned long int spaceIndex=0;
+    int lIndex=0;
+    for(int iclass=0;iclass<nclass;++iclass){
+      for(int isample=0;isample<trainingFeatures[iclass].size();++isample){
+        // //test
+        // std::cout << iclass;
+        prob[ibag].x[lIndex]=&(x_space[ibag][spaceIndex]);
+        for(int ifeature=0;ifeature<nFeatures;++ifeature){
+          x_space[ibag][spaceIndex].index=ifeature+1;
+          
x_space[ibag][spaceIndex].value=trainingFeatures[iclass][isample][ifeature];
+          // //test
+          // std::cout << " " << x_space[ibag][spaceIndex].index << ":" << 
x_space[ibag][spaceIndex].value;
+          ++spaceIndex;
+        }
+        x_space[ibag][spaceIndex++].index=-1;
+        prob[ibag].y[lIndex]=iclass;
+        ++lIndex;
+      }
+    }
+    assert(lIndex==prob[ibag].l);
+
+    //set SVM parameters through command line options
+    param[ibag].svm_type = svm_type_opt[0];
+    param[ibag].kernel_type = kernel_type_opt[0];
+    param[ibag].degree = kernel_degree_opt[0];
+    param[ibag].gamma = (gamma_opt[0]>0)? gamma_opt[0] : 1.0/nFeatures;
+    param[ibag].coef0 = coef0_opt[0];
+    param[ibag].nu = nu_opt[0];
+    param[ibag].cache_size = cache_opt[0];
+    param[ibag].C = ccost_opt[0];
+    param[ibag].eps = epsilon_tol_opt[0];
+    param[ibag].p = epsilon_loss_opt[0];
+    param[ibag].shrinking = (shrinking_opt[0])? 1 : 0;
+    param[ibag].probability = (prob_est_opt[0])? 1 : 0;
+    param[ibag].nr_weight = 0;//not used: I use priors and balancing
+    param[ibag].weight_label = NULL;
+    param[ibag].weight = NULL;
+
+    if(verbose_opt[0])
+      std::cout << "checking parameters" << std::endl;
+    svm_check_parameter(&prob[ibag],&param[ibag]);
+    if(verbose_opt[0])
+      std::cout << "parameters ok, training" << std::endl;
+    svm[ibag]=svm_train(&prob[ibag],&param[ibag]);
+    
+    if(verbose_opt[0])
+      std::cout << "SVM is now trained" << std::endl;
+    if(cv_opt[0]>0){
+      std::cout << "Confusion matrix" << std::endl;
+      ConfusionMatrix cm(nclass);
+      // for(int iclass=0;iclass<nclass;++iclass)
+      //   cm.pushBackClassName(type2string(iclass));
+      double *target = Malloc(double,prob[ibag].l);
+      svm_cross_validation(&prob[ibag],&param[ibag],cv_opt[0],target);
+      assert(param[ibag].svm_type != EPSILON_SVR&&param[ibag].svm_type != 
NU_SVR);//only for regression
+      int total_correct=0;
+      for(int i=0;i<prob[ibag].l;i++)
+        
cm.incrementResult(cm.getClass(prob[ibag].y[i]),cm.getClass(target[i]),1);
+      assert(cm.nReference());
+      std::cout << cm << std::endl;
+      std::cout << "Kappa: " << cm.kappa() << std::endl;
+      double se95_oa=0;
+      double doa=0;
+      doa=cm.oa_pct(&se95_oa);
+      std::cout << "Overall Accuracy: " << doa << " (" << se95_oa << ")"  << 
std::endl;
+      free(target);
+    }
+
+    // *NOTE* Because svm_model contains pointers to svm_problem, you can
+    // not free the memory used by svm_problem if you are still using the
+    // svm_model produced by svm_train(). 
+
+    // free(prob.y);
+    // free(prob.x);
+    // free(x_space);
+    // svm_destroy_param(&param);
+  }//for ibag
+
+  //--------------------------------- end of training 
-----------------------------------
+  if(!output_opt.size())
+    exit(0);
+
+
+  const char* pszMessage;
+  void* pProgressArg=NULL;
+  GDALProgressFunc pfnProgress=GDALTermProgress;
+  float progress=0;
+  if(!verbose_opt[0])
+    pfnProgress(progress,pszMessage,pProgressArg);
+  //-------------------------------- open image file 
------------------------------------
+  if(input_opt[0].find(".shp")==string::npos){
+    ImgReaderGdal testImage;
+    try{
+      if(verbose_opt[0]>=1)
+        std::cout << "opening image " << input_opt[0] << std::endl; 
+      testImage.open(input_opt[0]);
+    }
+    catch(string error){
+      cerr << error << std::endl;
+      exit(2);
+    }
+    ImgReaderGdal maskReader;
+    if(mask_opt.size()){
+      try{
+        if(verbose_opt[0]>=1)
+          std::cout << "opening mask image file " << mask_opt[0] << std::endl;
+        maskReader.open(mask_opt[0]);
+        assert(maskReader.nrOfCol()==testImage.nrOfCol());
+        assert(maskReader.nrOfRow()==testImage.nrOfRow());
+      }
+      catch(string error){
+        cerr << error << std::endl;
+        exit(2);
+      }
+      catch(...){
+        cerr << "error catched" << std::endl;
+        exit(1);
+      }
+    }
+    int nrow=testImage.nrOfRow();
+    int ncol=testImage.nrOfCol();
+    if(option_opt.findSubstring("INTERLEAVE=")==option_opt.end()){
+      string theInterleave="INTERLEAVE=";
+      theInterleave+=testImage.getInterleave();
+      option_opt.push_back(theInterleave);
+    }
+    vector<char> classOut(ncol);//classified line for writing to image file
+
+    //   assert(nband==testImage.nrOfBand());
+    ImgWriterGdal classImageBag;
+    ImgWriterGdal classImageOut;
+    ImgWriterGdal probImage;
+    string imageType=testImage.getImageType();
+    if(oformat_opt.size())//default
+      imageType=oformat_opt[0];
+    try{
+      assert(output_opt.size());
+      if(verbose_opt[0]>=1)
+        std::cout << "opening class image for writing output " << 
output_opt[0] << std::endl;
+      if(classBag_opt.size()){
+        
classImageBag.open(output_opt[0],ncol,nrow,nbag,GDT_Byte,imageType,option_opt);
+        classImageBag.copyGeoTransform(testImage);
+        classImageBag.setProjection(testImage.getProjection());
+      }
+      
classImageOut.open(output_opt[0],ncol,nrow,1,GDT_Byte,imageType,option_opt);
+      classImageOut.copyGeoTransform(testImage);
+      classImageOut.setProjection(testImage.getProjection());
+      if(colorTable_opt.size())
+        classImageOut.setColorTable(colorTable_opt[0],0);
+      if(prob_opt.size()){
+        
probImage.open(prob_opt[0],ncol,nrow,nreclass,GDT_Byte,imageType,option_opt);
+        probImage.copyGeoTransform(testImage);
+        probImage.setProjection(testImage.getProjection());
+      }
+    }
+    catch(string error){
+      cerr << error << std::endl;
+    }
+  
+    for(int iline=0;iline<nrow;++iline){
+      vector<float> buffer(ncol);
+      vector<short> lineMask;
+      if(mask_opt.size())
+        lineMask.resize(maskReader.nrOfCol());
+      Vector2d<float> hpixel(ncol,nband);
+      // Vector2d<float> fpixel(ncol);
+      Vector2d<float> prOut(nreclass,ncol);//posterior prob for each reclass
+      Vector2d<char> classBag;//classified line for writing to image file
+      if(classBag_opt.size())
+        classBag.resize(nbag,ncol);
+      //read all bands of all pixels in this line in hline
+      for(int iband=start_opt[0];iband<start_opt[0]+nband;++iband){
+        if(verbose_opt[0]==2)
+          std::cout << "reading band " << iband << std::endl;
+        assert(iband>=0);
+        assert(iband<testImage.nrOfBand());
+        try{
+          testImage.readData(buffer,GDT_Float32,iline,iband);
+        }
+        catch(string theError){
+          cerr << "Error reading " << input_opt[0] << ": " << theError << 
std::endl;
+          exit(3);
+        }
+        catch(...){
+          cerr << "error catched" << std::endl;
+          exit(3);
+        }
+        for(int icol=0;icol<ncol;++icol)
+          hpixel[icol][iband-start_opt[0]]=buffer[icol];
+      }
+
+      assert(nband==hpixel[0].size());
+      if(verbose_opt[0]==2)
+        std::cout << "used bands: " << nband << std::endl;
+      //read mask
+      if(!lineMask.empty()){
+        try{
+          maskReader.readData(lineMask,GDT_Int16,iline);
+        }
+        catch(string theError){
+          cerr << "Error reading " << mask_opt[0] << ": " << theError << 
std::endl;
+          exit(3);
+        }
+        catch(...){
+          cerr << "error catched" << std::endl;
+          exit(3);
+        }
+      }
+    
+      //process per pixel
+      for(int icol=0;icol<ncol;++icol){
+
+        bool masked=false;
+        if(!lineMask.empty()){
+          short theMask=0;
+          for(short ivalue=0;ivalue<maskValue_opt.size();++ivalue){
+            if(maskValue_opt[ivalue]>=0){//values set in maskValue_opt are 
invalid
+              if(lineMask[icol]==maskValue_opt[ivalue]){
+                theMask=(flag_opt.size()==maskValue_opt.size())? 
flag_opt[ivalue] : flag_opt[0];// lineMask[icol];
+                masked=true;
+                break;
+              }
+            }
+            else{//only values set in maskValue_opt are valid
+              if(lineMask[icol]!=-maskValue_opt[ivalue]){
+                  theMask=(flag_opt.size()==maskValue_opt.size())? 
flag_opt[ivalue] : flag_opt[0];// lineMask[icol];
+                masked=true;
+              }
+              else{
+                masked=false;
+                break;
+              }
+            }
+          }
+          if(masked){
+            if(classBag_opt.size())
+              for(int ibag=0;ibag<nbag;++ibag)
+                classBag[ibag][icol]=theMask;
+            classOut[icol]=theMask;
+            continue;
+          }
+        }
+        bool valid=false;
+        for(int iband=0;iband<nband;++iband){
+          if(hpixel[icol][iband]){
+            valid=true;
+            break;
+          }
+        }
+        if(!valid){
+          if(classBag_opt.size())
+            for(int ibag=0;ibag<nbag;++ibag)
+              classBag[ibag][icol]=flag_opt[0];
+          classOut[icol]=flag_opt[0];
+          continue;//next column
+        }
+        for(int iclass=0;iclass<nreclass;++iclass)
+          prOut[iclass][icol]=0;
+        //----------------------------------- classification 
-------------------
+        for(int ibag=0;ibag<nbag;++ibag){
+          //calculate image features
+          // fpixel[icol].clear();
+          // for(int iband=0;iband<nband;++iband)
+          //   
fpixel[icol].push_back((hpixel[icol][iband]-offset[ibag][iband])/scale[ibag][iband]);
+          vector<double> result(nclass);
+          // result=net[ibag].run(fpixel[icol]);
+          struct svm_node *x;
+          // x = (struct svm_node *) 
malloc((fpixel[icol].size()+1)*sizeof(struct svm_node));
+          x = (struct svm_node *) malloc((nband+1)*sizeof(struct svm_node));
+          // for(int i=0;i<fpixel[icol].size();++i){
+          for(int iband=0;iband<nband;++iband){
+            x[iband].index=iband+1;
+            // x[i].value=fpixel[icol][i];
+            
x[iband].value=(hpixel[icol][iband]-offset[ibag][iband])/scale[ibag][iband];
+          }
+          // x[fpixel[icol].size()].index=-1;//to end svm feature vector
+          x[nband].index=-1;//to end svm feature vector
+          double predict_label=0;
+          vector<float> pValues(nclass);
+          vector<float> prValues(nreclass);
+          vector<float> priorsReclass(nreclass);
+          float maxP=0;
+          if(!aggreg_opt[0]){
+            predict_label = svm_predict(svm[ibag],x);
+            for(int iclass=0;iclass<nclass;++iclass){
+              if(iclass==static_cast<int>(predict_label))
+                result[iclass]=1;
+              else
+                result[iclass]=0;
+            }
+          }
+          else{
+            assert(svm_check_probability_model(svm[ibag]));
+            predict_label = svm_predict_probability(svm[ibag],x,&(result[0]));
+          }
+          for(int iclass=0;iclass<nclass;++iclass){
+            float pv=result[iclass];
+            assert(pv>=0);
+            assert(pv<=1);
+            pv*=priors[iclass];
+            pValues[iclass]=pv;
+          }
+          float normReclass=0;
+          for(int iclass=0;iclass<nreclass;++iclass){
+            prValues[iclass]=0;
+            priorsReclass[iclass]=0;
+            float maxPaggreg=0;
+            for(int ic=0;ic<nclass;++ic){
+              if(vreclass[ic]==iclass){
+                priorsReclass[iclass]+=priors[ic];
+                switch(aggreg_opt[0]){
+                default:
+                case(1)://sum rule (sum posterior probabilities of aggregated 
individual classes)
+                  prValues[iclass]+=pValues[ic];
+                break;
+                case(0):
+                case(2)://max rule (look for maximum post probability of 
aggregated individual classes)
+                  if(pValues[ic]>maxPaggreg){
+                    maxPaggreg=pValues[ic];
+                    prValues[iclass]=maxPaggreg;
+                  }
+                  break;
+                }
+              }
+            }
+          }
+          for(int iclass=0;iclass<nreclass;++iclass)
+            normReclass+=prValues[iclass];
+        
+          //calculate posterior prob of bag 
+          if(classBag_opt.size()){
+            //search for max prob within bag
+            maxP=0;
+            classBag[ibag][icol]=0;
+          }
+          for(int iclass=0;iclass<nreclass;++iclass){
+            float prv=prValues[iclass];
+            prv/=normReclass;
+            //           prv*=100.0;
+            prValues[iclass]=prv;
+            switch(comb_opt[0]){
+            default:
+            case(0)://sum rule
+              
prOut[iclass][icol]+=prValues[iclass]+static_cast<float>(1.0-nbag)/nbag*priorsReclass[iclass];//add
 probabilities for each bag
+              break;
+            case(1)://product rule
+              
prOut[iclass][icol]*=pow(priorsReclass[iclass],static_cast<float>(1.0-nbag)/nbag)*prValues[iclass];//add
 probabilities for each bag
+              break;
+            case(2)://max rule
+              if(prValues[iclass]>prOut[iclass][icol])
+                prOut[iclass][icol]=prValues[iclass];
+              break;
+            }
+            if(classBag_opt.size()){
+              //search for max prob within bag
+              if(prValues[iclass]>maxP){
+                maxP=prValues[iclass];
+                classBag[ibag][icol]=vcode[iclass];
+              }
+            }
+          }
+          free(x);
+        }//ibag
+
+        //search for max class prob
+        float maxBag=0;
+        float normBag=0;
+        for(int iclass=0;iclass<nreclass;++iclass){
+          if(prOut[iclass][icol]>maxBag){
+            maxBag=prOut[iclass][icol];
+            classOut[icol]=vcode[iclass];
+          }
+          normBag+=prOut[iclass][icol];
+        }
+        //normalize prOut and convert to percentage
+        if(prob_opt.size()){
+          for(int iclass=0;iclass<nreclass;++iclass){
+            float prv=prOut[iclass][icol];
+            prv/=normBag;
+            prv*=100.0;
+            prOut[iclass][icol]=static_cast<short>(prv+0.5);
+          }
+        }
+      }//icol
+      //----------------------------------- write output 
------------------------------------------
+      if(classBag_opt.size())
+        for(int ibag=0;ibag<nbag;++ibag)
+          classImageBag.writeData(classBag[ibag],GDT_Byte,iline,ibag);
+      if(prob_opt.size()){
+        for(int iclass=0;iclass<nreclass;++iclass)
+          probImage.writeData(prOut[iclass],GDT_Float32,iline,iclass);
+      }
+      classImageOut.writeData(classOut,GDT_Byte,iline);
+      if(!verbose_opt[0]){
+        progress=static_cast<float>(iline+1.0)/classImageOut.nrOfRow();
+        pfnProgress(progress,pszMessage,pProgressArg);
+      }
+    }
+    testImage.close();
+    if(prob_opt.size())
+      probImage.close();
+    if(classBag_opt.size())
+      classImageBag.close();
+    classImageOut.close();
+  }
+  else{//classify shape file
+    for(int ivalidation=0;ivalidation<input_opt.size();++ivalidation){
+      assert(output_opt.size()==input_opt.size());
+      if(verbose_opt[0])
+        std::cout << "opening img reader " << input_opt[ivalidation] << 
std::endl;
+      ImgReaderOgr imgReaderOgr(input_opt[ivalidation]);
+      if(verbose_opt[0])
+        std::cout << "opening img writer and copying fields from img reader" 
<< output_opt[ivalidation] << std::endl;
+      ImgWriterOgr imgWriterOgr(output_opt[ivalidation],imgReaderOgr,false);
+      if(verbose_opt[0])
+        std::cout << "creating field class" << std::endl;
+      imgWriterOgr.createField("class",OFTInteger);
+      OGRFeature *poFeature;
+      unsigned int ifeature=0;
+      unsigned int nFeatures=imgReaderOgr.getFeatureCount();
+      while( (poFeature = imgReaderOgr.getLayer()->GetNextFeature()) != NULL ){
+        if(verbose_opt[0]>1)
+          std::cout << "feature " << ifeature << std::endl;
+        if( poFeature == NULL )
+          break;
+        OGRFeature *poDstFeature = NULL;
+        poDstFeature=imgWriterOgr.createFeature();
+        if( poDstFeature->SetFrom( poFeature, TRUE ) != OGRERR_NONE ){
+          CPLError( CE_Failure, CPLE_AppDefined,
+                    "Unable to translate feature %d from layer %s.\n",
+                    poFeature->GetFID(), imgWriterOgr.getLayerName().c_str() );
+          OGRFeature::DestroyFeature( poFeature );
+          OGRFeature::DestroyFeature( poDstFeature );
+        }
+        vector<float> validationPixel;
+        vector<float> validationFeature;
+        
+        imgReaderOgr.readData(validationPixel,OFTReal,fields,poFeature);
+        OGRFeature::DestroyFeature( poFeature );
+//         assert(validationPixel.size()>=start_opt[0]+nband);
+        assert(validationPixel.size()==nband);
+        vector<float> prOut(nreclass);//posterior prob for each reclass
+        for(int iclass=0;iclass<nreclass;++iclass)
+          prOut[iclass]=0;
+        for(int ibag=0;ibag<nbag;++ibag){
+//           for(int iband=start_opt[0];iband<start_opt[0]+nband;++iband){
+          for(int iband=0;iband<nband;++iband){
+//             
validationFeature.push_back((validationPixel[iband]-offset[ibag][iband-start_opt[0]])/scale[ibag][iband-start_opt[0]]);
+            
validationFeature.push_back((validationPixel[iband]-offset[ibag][iband])/scale[ibag][iband]);
+            if(verbose_opt[0]==2)
+              std::cout << " " << validationFeature.back();
+          }
+          if(verbose_opt[0]==2)
+            std::cout << std::endl;
+          vector<double> result(nclass);
+
+          // result=net[ibag].run(validationFeature);
+          struct svm_node *x;
+          x = (struct svm_node *) 
malloc((validationFeature.size()+1)*sizeof(struct svm_node));
+          for(int i=0;i<validationFeature.size();++i){
+            x[i].index=i+1;
+            x[i].value=validationFeature[i];
+          }
+          x[validationFeature.size()].index=-1;//to end svm feature vector
+          double predict_label=0;
+          vector<float> pValues(nclass);
+          vector<float> prValues(nreclass);
+          vector<float> priorsReclass(nreclass);
+          float maxP=0;
+          if(!aggreg_opt[0]){
+            predict_label = svm_predict(svm[ibag],x);
+            for(int iclass=0;iclass<nclass;++iclass){
+              if(predict_label==static_cast<int>(predict_label))
+                result[iclass]=1;
+              else
+                result[iclass]=0;
+            }
+          }
+          else{
+            assert(svm_check_probability_model(svm[ibag]));
+            predict_label = svm_predict_probability(svm[ibag],x,&(result[0]));
+          }
+          // int maxClass=0;
+          for(int iclass=0;iclass<nclass;++iclass){
+            float pv=(result[iclass]+1.0)/2.0;//bring back to scale [0,1]
+            pv*=priors[iclass];
+            pValues[iclass]=pv;
+          }
+          float normReclass=0;
+          for(int iclass=0;iclass<nreclass;++iclass){
+            prValues[iclass]=0;
+            priorsReclass[iclass]=0;
+            float maxPaggreg=0;
+            for(int ic=0;ic<nclass;++ic){
+              if(vreclass[ic]==iclass){
+                priorsReclass[iclass]+=priors[ic];
+                switch(aggreg_opt[0]){
+                default:
+                case(0)://sum rule (sum posterior probabilities of aggregated 
individual classes)
+                  prValues[iclass]+=pValues[ic];
+                  break;
+                case(1)://max rule (look for maximum post probability of 
aggregated individual classes)
+                  if(pValues[ic]>maxPaggreg){
+                    maxPaggreg=pValues[ic];
+                    prValues[iclass]=maxPaggreg;
+                  }
+                  break;
+                }
+              }
+            }
+          }
+          for(int iclass=0;iclass<nreclass;++iclass)
+            normReclass+=prValues[iclass];
+          //calculate posterior prob of bag 
+          for(int iclass=0;iclass<nreclass;++iclass){
+            float prv=prValues[iclass];
+            prv/=normReclass;
+            //           prv*=100.0;
+            prValues[iclass]=prv;
+            switch(comb_opt[0]){
+            default:
+            case(0)://sum rule
+              
prOut[iclass]+=prValues[iclass]+static_cast<float>(1.0-nbag)/nbag*priorsReclass[iclass];//add
 probabilities for each bag
+              break;
+            case(1)://product rule
+              
prOut[iclass]*=pow(priorsReclass[iclass],static_cast<float>(1.0-nbag)/nbag)*prValues[iclass];//add
 probabilities for each bag
+              break;
+            case(2)://max rule
+              if(prValues[iclass]>prOut[iclass])
+                prOut[iclass]=prValues[iclass];
+              break;
+            }
+          }
+          free(x);
+        }//for ibag
+        //search for max class prob
+        float maxBag=0;
+        float normBag=0;
+        char classOut=0;
+        for(int iclass=0;iclass<nreclass;++iclass){
+          if(prOut[iclass]>maxBag){
+            maxBag=prOut[iclass];
+            classOut=vcode[iclass];
+          }
+          normBag+=prOut[iclass];
+        }
+        //normalize prOut and convert to percentage
+        for(int iclass=0;iclass<nreclass;++iclass){
+          float prv=prOut[iclass];
+          prv/=normBag;
+          prv*=100.0;
+          prOut[iclass]=static_cast<short>(prv+0.5);
+        }
+        poDstFeature->SetField("class",classOut);
+        poDstFeature->SetFID( poFeature->GetFID() );
+        CPLErrorReset();
+        if(imgWriterOgr.createFeature( poDstFeature ) != OGRERR_NONE){
+          CPLError( CE_Failure, CPLE_AppDefined,
+                    "Unable to translate feature %d from layer %s.\n",
+                    poFeature->GetFID(), imgWriterOgr.getLayerName().c_str() );
+          OGRFeature::DestroyFeature( poDstFeature );
+          OGRFeature::DestroyFeature( poDstFeature );
+        }
+        ++ifeature;
+        if(!verbose_opt[0]){
+          progress=static_cast<float>(ifeature+1.0)/nFeatures;
+          pfnProgress(progress,pszMessage,pProgressArg);
+        }
+      }
+      imgReaderOgr.close();
+      imgWriterOgr.close();
+    }
+  }
+
+  for(int ibag=0;ibag<nbag;++ibag){
+    svm_destroy_param[ibag](&param[ibag]);
+    free(prob[ibag].y);
+    free(prob[ibag].x);
+    free(x_space[ibag]);
+    svm_free_and_destroy_model(&(svm[ibag]));
+  }
+  return 0;
+}
diff --git a/src/apps/pkdsm2shadow.cc b/src/apps/pkdsm2shadow.cc
new file mode 100644
index 0000000..87dbd6f
--- /dev/null
+++ b/src/apps/pkdsm2shadow.cc
@@ -0,0 +1,148 @@
+/**********************************************************************
+pkveg2shadow.cc: program to calculate sun shadow based on digital surface 
model and sun angles)
+Copyright (C) 2008-2012 Pieter Kempeneers
+
+This file is part of pktools
+
+pktools is free software: you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation, either version 3 of the License, or
+(at your option) any later version.
+
+pktools is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with pktools.  If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+#include <assert.h>
+#include <iostream>
+#include <string>
+#include <fstream>
+#include <math.h>
+#include <sys/types.h>
+#include <stdio.h>
+#include "base/Optionpk.h"
+#include "base/Vector2d.h"
+#include "algorithms/Filter2d.h"
+#include "imageclasses/ImgReaderGdal.h"
+#include "imageclasses/ImgWriterGdal.h"
+
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+/*------------------
+  Main procedure
+  ----------------*/
+int main(int argc,char **argv) {
+  std::string versionString="version ";
+  versionString+=VERSION;
+  versionString+=", Copyright (C) 2008-2012 Pieter Kempeneers.\n\
+   This program comes with ABSOLUTELY NO WARRANTY; for details type use option 
-h.\n\
+   This is free software, and you are welcome to redistribute it\n\
+   under certain conditions; use option --license for details.";
+  Optionpk<bool> version_opt("\0","version",versionString,false);
+  Optionpk<bool> license_opt("lic","license","show license information",false);
+  Optionpk<bool> help_opt("h","help","shows this help info",false);
+  Optionpk<bool> todo_opt("\0","todo","",false);
+  Optionpk<std::string> input_opt("i","input","input image file","");
+  Optionpk<std::string> output_opt("o", "output", "Output image file", "");
+  Optionpk<double> sza_opt("sza", "sza", "Sun zenith angle.");
+  Optionpk<double> saa_opt("saa", "saa", "Sun azimuth angle (N=0 E=90 S=180 
W=270).");
+  Optionpk<int> flag_opt("f", "flag", "Flag to put in image if pixel shadow", 
0);
+  Optionpk<std::string>  otype_opt("ot", "otype", "Data type for output image 
({Byte/Int16/UInt16/UInt32/Int32/Float32/Float64/CInt16/CInt32/CFloat32/CFloat64}).
 Empty string: inherit type from input image", "");
+  Optionpk<string>  oformat_opt("of", "oformat", "Output image format (see 
also gdal_translate). Empty string: inherit from input image");
+  Optionpk<string>  colorTable_opt("ct", "ct", "color table (file with 5 
columns: id R G B ALFA (0: transparent, 255: solid)", "");
+  Optionpk<std::string> option_opt("co", "co", "options: NAME=VALUE [-co 
COMPRESS=LZW] [-co INTERLEAVE=BAND]");
+  Optionpk<short> verbose_opt("v", "verbose", "verbose mode if > 0", 0);
+
+  version_opt.retrieveOption(argc,argv);
+  license_opt.retrieveOption(argc,argv);
+  help_opt.retrieveOption(argc,argv);
+  todo_opt.retrieveOption(argc,argv);
+
+  input_opt.retrieveOption(argc,argv);
+  output_opt.retrieveOption(argc,argv);
+  sza_opt.retrieveOption(argc,argv);
+  saa_opt.retrieveOption(argc,argv);
+  flag_opt.retrieveOption(argc,argv);
+  option_opt.retrieveOption(argc,argv);
+  otype_opt.retrieveOption(argc,argv);
+  oformat_opt.retrieveOption(argc,argv);
+  colorTable_opt.retrieveOption(argc,argv);
+  verbose_opt.retrieveOption(argc,argv);
+
+  if(version_opt[0]||todo_opt[0]){
+    cout << version_opt.getHelp() << endl;
+    cout << "todo: " << todo_opt.getHelp() << endl;
+    exit(0);
+  }
+  if(license_opt[0]){
+    cout << Optionpk<bool>::getGPLv3License() << endl;
+    exit(0);
+  }
+  if(help_opt[0]){
+    cout << "usage: pkveg2shadow -i inputimage -o outputimage [OPTIONS]" << 
endl;
+    exit(0);
+  }
+
+  ImgReaderGdal input;
+  ImgWriterGdal output;
+  input.open(input_opt[0]);
+  // output.open(output_opt[0],input);
+  GDALDataType theType=GDT_Unknown;
+  if(verbose_opt[0])
+    cout << "possible output data types: ";
+  for(int iType = 0; iType < GDT_TypeCount; ++iType){
+    if(verbose_opt[0])
+      cout << " " << GDALGetDataTypeName((GDALDataType)iType);
+    if( GDALGetDataTypeName((GDALDataType)iType) != NULL
+        && EQUAL(GDALGetDataTypeName((GDALDataType)iType),
+                 otype_opt[0].c_str()))
+      theType=(GDALDataType) iType;
+  }
+  if(theType==GDT_Unknown)
+    theType=input.getDataType();
+
+  if(verbose_opt[0])
+    std::cout << std::endl << "Output pixel type:  " << 
GDALGetDataTypeName(theType) << endl;
+
+  string imageType=input.getImageType();
+  if(oformat_opt.size())
+    imageType=oformat_opt[0];
+
+  if(option_opt.findSubstring("INTERLEAVE=")==option_opt.end()){
+    string theInterleave="INTERLEAVE=";
+    theInterleave+=input.getInterleave();
+    option_opt.push_back(theInterleave);
+  }
+  try{
+    
output.open(output_opt[0],input.nrOfCol(),input.nrOfRow(),input.nrOfBand(),theType,imageType,option_opt);
+  }
+  catch(string errorstring){
+    cout << errorstring << endl;
+    exit(4);
+  }
+  if(input.isGeoRef()){
+    output.setProjection(input.getProjection());
+    double ulx,uly,deltaX,deltaY,rot1,rot2;
+    input.getGeoTransform(ulx,uly,deltaX,deltaY,rot1,rot2);
+    output.setGeoTransform(ulx,uly,deltaX,deltaY,rot1,rot2);
+  }
+  if(input.getColorTable()!=NULL)
+    output.setColorTable(input.getColorTable());
+
+  Filter2d::Filter2d filter2d;
+  if(verbose_opt[0])
+    std::cout<< "class values: ";
+  if(colorTable_opt[0]!="")
+    output.setColorTable(colorTable_opt[0]);
+  
filter2d.shadowDsm(input,output,sza_opt[0],saa_opt[0],input.getDeltaX(),flag_opt[0]);
+  input.close();
+  output.close();
+  return 0;
+}
diff --git a/src/apps/pkextract.cc b/src/apps/pkextract.cc
index b58ca44..8f63472 100644
--- a/src/apps/pkextract.cc
+++ b/src/apps/pkextract.cc
@@ -70,7 +70,7 @@ int main(int argc, char *argv[])
   Optionpk<string> ltype_opt("lt", "ltype", "Label type: In16 or String", 
"Integer");
   Optionpk<string> fieldname_opt("bn", "bname", "Field name of output shape 
file", "B");
   Optionpk<string> label_opt("cn", "cname", "name of the class label in the 
output vector file", "label");
-  Optionpk<bool> polygon_opt("l", "line", "create OGRPolygon as geometry 
instead of points. Only if sample option is also of polygon type. Use 0 for 
OGRPoint", 0);
+  Optionpk<bool> polygon_opt("l", "line", "create OGRPolygon as geometry 
instead of points. Only if sample option is also of polygon type. Use 0 for 
OGRPoint", false);
   Optionpk<int> band_opt("b", "band", "band index to crop. Use -1 to use all 
bands)", -1);
   Optionpk<short> rule_opt("r", "rule", "rule how to report image information 
per feature. 0: value at each point (or at centroid of the polygon if line is 
not set), 1: mean value (written to centroid of polygon if line is not set), 2: 
proportion classes, 3: custom, 4: minimum of polygon).", 0);
   Optionpk<short> verbose_opt("v", "verbose", "verbose mode if > 0", 0);
@@ -481,7 +481,7 @@ int main(int argc, char *argv[])
           std::cout << "class " << class_opt[iclass] << " has " << 
nvalid[iclass] << " samples" << std::endl;
       }
     }
-    else{//classification file
+    else{//class_opt[0]!=0
       assert(class_opt[0]);
       //   if(class_opt[0]){
       assert(threshold_opt.size()==1||threshold_opt.size()==class_opt.size());
diff --git a/src/imageclasses/ImgWriterGdal.cc 
b/src/imageclasses/ImgWriterGdal.cc
index bbbdacf..06e9cb2 100644
--- a/src/imageclasses/ImgWriterGdal.cc
+++ b/src/imageclasses/ImgWriterGdal.cc
@@ -106,6 +106,7 @@ void ImgWriterGdal::setCodec(const ImgReaderGdal& imgSrc){
   }
   char **papszMetadata;
   papszMetadata = poDriver->GetMetadata();
+  //todo: try and catch if CREATE is not supported (as in PNG)
   assert( CSLFetchBoolean( papszMetadata, GDAL_DCAP_CREATE, FALSE ));
   char **papszOptions=NULL;
   for(vector<string>::const_iterator 
optionIt=m_options.begin();optionIt!=m_options.end();++optionIt)
@@ -181,6 +182,7 @@ void ImgWriterGdal::setCodec(const string& imageType)
   }
   char **papszMetadata;
   papszMetadata = poDriver->GetMetadata();
+  //todo: try and catch if CREATE is not supported (as in PNG)
   assert( CSLFetchBoolean( papszMetadata, GDAL_DCAP_CREATE, FALSE ));
   char **papszOptions=NULL;
   for(vector<string>::const_iterator 
optionIt=m_options.begin();optionIt!=m_options.end();++optionIt)

-- 
Alioth's /usr/local/bin/git-commit-notice on 
/srv/git.debian.org/git/pkg-grass/pktools.git

_______________________________________________
Pkg-grass-devel mailing list
Pkg-grass-devel@lists.alioth.debian.org
http://lists.alioth.debian.org/cgi-bin/mailman/listinfo/pkg-grass-devel

Reply via email to