This is an automated email from the git hooks/post-receive script.

ppm-guest pushed a commit to annotated tag v0.26
in repository libmath-prime-util-perl.

commit 80cb008d0b719746dd390c98f8620aa756a10aee
Author: Dana Jacobsen <d...@acm.org>
Date:   Sun Apr 21 16:48:11 2013 -0700

    Fixes for final release
---
 Changes                          |  4 ++--
 examples/verify-gmp-eccp-cert.pl |  0
 lib/Math/Prime/Util.pm           | 10 ++++++----
 t/81-bignum.t                    | 18 +++++++++++-------
 4 files changed, 19 insertions(+), 13 deletions(-)

diff --git a/Changes b/Changes
index 7176213..c2d3246 100644
--- a/Changes
+++ b/Changes
@@ -1,6 +1,6 @@
 Revision history for Perl extension Math::Prime::Util.
 
-0.26 xx April 2013
+0.26 21 April 2013
 
     - Pure Perl factoring:
         - real p-1 -- much faster and more effective
@@ -14,7 +14,7 @@ Revision history for Perl extension Math::Prime::Util.
         verify_prime       checks a primality certificate.
 
     - Pure perl primality proof now uses BLS75 instead of Lucas, so some
-      numbers will be much faster.  n-1 only needs factoring to (n/2)^1/3.
+      numbers will be much faster [n-1 only needs factoring to (n/2)^1/3].
 
     - Math::Prime::Util::ECAffinePoint and ECProjectivePoint modules for
       dealing with elliptic curves.
diff --git a/examples/verify-gmp-eccp-cert.pl b/examples/verify-gmp-eccp-cert.pl
old mode 100644
new mode 100755
diff --git a/lib/Math/Prime/Util.pm b/lib/Math/Prime/Util.pm
index 44c9464..1fc59b2 100644
--- a/lib/Math/Prime/Util.pm
+++ b/lib/Math/Prime/Util.pm
@@ -2895,16 +2895,18 @@ A certificate is an array holding an C<n-cert>.  An 
C<n-cert> is one of:
 
   n,"AGKM",[ec-block],[ec-block],...
        An Elliptic Curve certificate.  We are given n, the method "AGKM"
-       or "ECPP", and a one or more 6-element blocks representing a
+       or "ECPP", and one or more 6-element blocks representing a
        standard ECPP or Atkin-Goldwasser-Kilian-Morain certificate.
-       The format of this n-cert is non-recursive so it can be easily
-       used for similar programs such as Sage and GMP-ECPP.
+       In its traditional form, it is non-recursive, with each q value
+       being proved by successive blocks (this makes it easy to use for
+       programs like Sage and GMP-ECPP).  A q value is also allowed to
+       be an n-cert, which allows an alternative proof for the last q.
        Every ec-block has 6 elements:
          N   the N value this block proves prime if q is prime
          a   value describing the elliptic curve to be used
          b   value describing the elliptic curve to be used
          m   order of the curve
-         q   a probable prime > (N^1/4+1)^2
+         q   a probable prime > (N^1/4+1)^2 (may be an n-cert)
          P   a point [x,y] on the curve (affine coordinates)
        The certificate passes if:
          - the final q can be proved with BPSW.
diff --git a/t/81-bignum.t b/t/81-bignum.t
index dc02569..dc41837 100644
--- a/t/81-bignum.t
+++ b/t/81-bignum.t
@@ -76,7 +76,8 @@ plan tests =>  0
              + scalar(keys %allfactors)
              + 5   # moebius, euler_phi, jordan totient
              + 15  # random primes
-             + 5   # verify_prime
+             + 3   # verify_prime
+             + 2*$extra # "big" prime verification
              + 0;
 
 # Using GMP makes these tests run about 2x faster on some machines
@@ -292,7 +293,7 @@ sub check_pcbounds {
 ###############################################################################
 
 # Provable primes
-SKIP: {
+{
   my @proof;
 
   @proof = (20907001, "Pratt", [ 2,
@@ -315,8 +316,14 @@ SKIP: {
     [ 2, 2, 2, 2, 2 ]);
   ok( verify_prime(@proof), "simple n-1 proof verified" );
 
-  skip "Skipping bigger proofs without fast BigInt library", 3
-       if $bigintlib !~ /^(GMP|Pari)/;
+  @proof = ('677826928624294778921',"AGKM", ['677826928624294778921', 
'404277700094248015180', '599134911995823048257', '677826928656744857936', 
'104088901820753203', ['2293544533', '356794037129589115041']], 
['104088901820753203', '0', '73704321689372825', '104088902465395836', 
'1112795797', ['3380482019', '53320146243107032']], ['1112795797', '0', 
'638297481', '1112860899', '39019', ['166385704', '356512285']]);
+  ok( verify_prime(@proof), "ECPP primality proof of 677826928624294778921 
verified" );
+}
+
+if ($extra) {
+  my @proof;
+  #skip "Skipping bigger proofs without fast BigInt library", 2
+  #     if $bigintlib !~ /^(GMP|Pari)/;
 
   @proof = 
('6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151',
 'n-1',
   [ 2,3,5,11,17,31,41,53,131,157,521,1613,61681,8191,42641,858001,51481, 
'7623851', '308761441' ],
@@ -331,7 +338,4 @@ SKIP: {
     ] ],
   [ 3,5,3,2,3,3,3,3 ] );
   ok( verify_prime(@proof), "2**607-1 primality proof verified" );
-
-  @proof = ('677826928624294778921',"AGKM", ['677826928624294778921', 
'404277700094248015180', '599134911995823048257', '677826928656744857936', 
'104088901820753203', ['2293544533', '356794037129589115041']], 
['104088901820753203', '0', '73704321689372825', '104088902465395836', 
'1112795797', ['3380482019', '53320146243107032']], ['1112795797', '0', 
'638297481', '1112860899', '39019', ['166385704', '356512285']]);
-  ok( verify_prime(@proof), "ECPP primality proof of 677826928624294778921 
verified" );
 }

-- 
Alioth's /usr/local/bin/git-commit-notice on 
/srv/git.debian.org/git/pkg-perl/packages/libmath-prime-util-perl.git

_______________________________________________
Pkg-perl-cvs-commits mailing list
Pkg-perl-cvs-commits@lists.alioth.debian.org
http://lists.alioth.debian.org/cgi-bin/mailman/listinfo/pkg-perl-cvs-commits

Reply via email to