commit 84357a54c68f0db63bc1c9a4401c9efd466e498c
Author: Jakub Bogusz <[email protected]>
Date:   Sat Jun 20 12:45:20 2020 +0200

    - updated to 0.12 (new soname)
    - updated info patch

 gnuastro-info.patch | 204 ++++++++++++++++++++++++++--------------------------
 gnuastro.spec       |   8 +--
 2 files changed, 106 insertions(+), 106 deletions(-)
---
diff --git a/gnuastro.spec b/gnuastro.spec
index 8b6e102..2760cbe 100644
--- a/gnuastro.spec
+++ b/gnuastro.spec
@@ -5,12 +5,12 @@
 Summary:       GNU Astronomy Utilities
 Summary(pl.UTF-8):     Narzędzia astronomiczne GNU
 Name:          gnuastro
-Version:       0.11
-Release:       4
+Version:       0.12
+Release:       1
 License:       GPL v3+
 Group:         Applications/Science
 Source0:       https://ftp.gnu.org/gnu/gnuastro/%{name}-%{version}.tar.lz
-# Source0-md5: 5fcb6f89710d9047dabeaec6fe054b43
+# Source0-md5: 07d27c08cf8baae53a523224b4ed9ce5
 Patch0:                %{name}-info.patch
 Patch1:                ac.patch
 URL:           http://www.gnu.org/software/gnuastro/
@@ -139,7 +139,7 @@ rm -rf $RPM_BUILD_ROOT
 %attr(755,root,root) %{_bindir}/asttable
 %attr(755,root,root) %{_bindir}/astwarp
 %attr(755,root,root) %{_libdir}/libgnuastro.so.*.*.*
-%attr(755,root,root) %ghost %{_libdir}/libgnuastro.so.9
+%attr(755,root,root) %ghost %{_libdir}/libgnuastro.so.10
 %dir %{_sysconfdir}/gnuastro
 %config(noreplace) %verify(not md5 mtime size) 
%{_sysconfdir}/gnuastro/ast*.conf
 %config(noreplace) %verify(not md5 mtime size) 
%{_sysconfdir}/gnuastro/gnuastro.conf
diff --git a/gnuastro-info.patch b/gnuastro-info.patch
index 6f3c782..872af7e 100644
--- a/gnuastro-info.patch
+++ b/gnuastro-info.patch
@@ -1,5 +1,5 @@
---- gnuastro-0.11/doc/gnuastro.texi.orig       2019-11-25 15:02:54.000000000 
+0100
-+++ gnuastro-0.11/doc/gnuastro.texi    2019-12-05 19:26:15.846038194 +0100
+--- gnuastro-0.12/doc/gnuastro.texi.orig       2020-05-20 16:19:27.000000000 
+0200
++++ gnuastro-0.12/doc/gnuastro.texi    2020-06-20 11:58:23.172759160 +0200
 @@ -47,62 +47,62 @@
  @c To include in the info directory.
  @dircategory Astronomy
@@ -247,7 +247,7 @@
  
  Gnuastro library
  
-@@ -795,7 +795,7 @@
+@@ -796,7 +796,7 @@
  
  @noindent
  See @ref{Known issues} if you confront any complications.
@@ -256,7 +256,7 @@
  You can read the same section on the command-line by running @command{$ info 
astprogname} (for example @command{info asttable}).
  The `Invoke ProgramName' sub-section starts with a few examples of each 
program and goes on to explain the invocation details.
  See @ref{Getting help} for all the options you have to get help.
-@@ -1517,7 +1517,7 @@
+@@ -1519,7 +1519,7 @@
  In these tutorials, we have intentionally avoided too many cross references 
to make it more easy to read.
  For more information about a particular program, you can visit the section 
with the same name as the program in this book.
  Each program section in the subsequent chapters starts by explaining the 
general concepts behind what it does, for example see @ref{Convolve}.
@@ -265,7 +265,7 @@
  For an explanation of the conventions we use in the example codes through the 
book, please see @ref{Conventions}.
  
  @menu
-@@ -1982,8 +1982,8 @@
+@@ -1984,8 +1984,8 @@
  If you are searching for a specific phrase in the whole book (for example an 
option name), press @key{s} and type your search phrase and end it with an 
@key{<ENTER>}.
  
  You don't need to start from the top of the manual every time.
@@ -276,7 +276,7 @@
  These sections are specifically for the description of inputs, outputs and 
configuration options of each program.
  You can access them directly for each program by giving its executable name 
to Info.
  
-@@ -2573,7 +2573,7 @@
+@@ -2575,7 +2575,7 @@
  However, if you run Warp multiple times, the pixels will be mixed multiple 
times, creating a strong artificial blur/smoothing, or stronger correlated 
noise.
  
  Recall that the merging of multiple warps is done through matrix 
multiplication, therefore order matters in the separate operations.
@@ -285,7 +285,7 @@
  
  Fortunately these datasets are already aligned to the same pixel grid, so you 
don't actually need the files that were just generated.You can safely delete 
them all with the following command.
  Here, you see why we put the processed outputs that we need later into a 
separate directory.
-@@ -3157,7 +3157,7 @@
+@@ -3159,7 +3159,7 @@
  We can now feed this catalog into MakeProfiles using the command below to 
build the apertures over the image.
  The most important option for this particular job is @option{--mforflatpix}, 
it tells MakeProfiles that the values in the magnitude column should be used 
for each pixel of a flat profile.
  Without it, MakeProfiles would build the profiles such that the @emph{sum} of 
the pixels of each profile would have a @emph{magnitude} (in log-scale) of the 
value given in that column (what you would expect when simulating a galaxy for 
example).
@@ -294,7 +294,7 @@
  
  @example
  $ astmkprof apertures.txt --background=flat-ir/xdf-f160w.fits     \
-@@ -5889,7 +5889,7 @@
+@@ -5891,7 +5891,7 @@
  @cindex Arguments to programs
  @cindex Command-line arguments
  When you type a command on the command-line, it is passed onto the shell (a 
generic name for the program that manages the command-line) as a string of 
characters.
@@ -303,7 +303,7 @@
  
  The shell then brakes up your string into separate @emph{tokens} or 
@emph{words} using any @emph{metacharacters} (like white-space, tab, 
@command{|}, @command{>} or @command{;}) that are in the string.
  On the command-line, the first thing you usually enter is the name of the 
program you want to run.
-@@ -5915,7 +5915,7 @@
+@@ -5917,7 +5917,7 @@
  The outputs of @option{--usage} and @option{--help} shows which arguments are 
optional and which are mandatory, see @ref{--usage}.
  
  As their name suggests, @emph{options} can be considered to be optional and 
most of the time, you don't have to worry about what order you specify them in.
@@ -312,7 +312,7 @@
  
  @cindex Metacharacters on the command-line In case your arguments or option 
values contain any of the shell's meta-characters, you have to quote them.
  If there is only one such character, you can use a backslash (@command{\}) 
before it.
-@@ -5945,8 +5945,8 @@
+@@ -5947,8 +5947,8 @@
  @node Arguments, Options, Arguments and options, Arguments and options
  @subsubsection Arguments
  In Gnuastro, arguments are almost exclusively used as the input data file 
names.
@@ -323,7 +323,7 @@
  
  Generally, if there is a standard file name extension for a particular 
format, that filename extension is used to separate the kinds of arguments.
  The list below shows the data formats that are recognized in Gnuastro's 
programs based on their file name endings.
-@@ -5997,7 +5997,7 @@
+@@ -5999,7 +5999,7 @@
  A single option can be called in two ways: @emph{long} or @emph{short}.
  All options in Gnuastro accept the long format which has two hyphens an can 
have many characters (for example @option{--hdu}).
  Short options only have one hyphen (@key{-}) followed by one character (for 
example @option{-h}).
@@ -332,7 +332,7 @@
  Both formats are shown for those which support both.
  First the short is shown then the long.
  
-@@ -6066,7 +6066,7 @@
+@@ -6068,7 +6068,7 @@
  If the change wasn't satisfactory, you can remove the one you just added and 
not worry about forgetting the original value.
  Without this capability, you would have to memorize or save the original 
value somewhere else, run the command and then change the value again which is 
not at all convenient and is potentially cause lots of bugs.
  
@@ -341,7 +341,7 @@
  In these cases, the order of stored values is the same order that you 
specified on the command-line.
  
  @cindex Configuration files
-@@ -6603,7 +6603,7 @@
+@@ -6604,7 +6604,7 @@
  In case the necessary parameters are not given through any of these methods, 
the program will print a missing option error and abort.
  The only exception to this is @option{--numthreads}, whose default value is 
determined at run-time using the number of threads available to your system, 
see @ref{Multi-threaded operations}.
  Of course, you can still provide a default value for the number of threads at 
any of the levels below, but if you don't, the program will not abort.
@@ -350,7 +350,7 @@
  
  
  
-@@ -6978,7 +6978,7 @@
+@@ -6979,7 +6979,7 @@
  @end example
  
  @noindent
@@ -359,7 +359,7 @@
  Finally, if you run Info with the official program name, for example Crop or 
NoiseChisel:
  
  @example
-@@ -7345,7 +7345,7 @@
+@@ -7346,7 +7346,7 @@
  For example, let's assume you have just ran MakeCatalog (see 
@ref{MakeCatalog}) on an image to measure some properties for the labeled 
regions (which might be detected galaxies for example) in the image.
  For each labeled region (detected galaxy), there will be a @emph{row} which 
groups its measured properties as @emph{columns}, one column for each property.
  One such property can be the object's magnitude, which is the sum of pixels 
with that label, or its center can be defined as the light-weighted average 
value of those pixels.
@@ -368,7 +368,7 @@
  
  As a summary, for each labeled region (or, galaxy) we have one @emph{row} and 
for each measured property we have one @emph{column}.
  This high-level structure is usually the first step for higher-level 
analysis, for example finding the stellar mass or photometric redshift from 
magnitudes in multiple colors.
-@@ -7910,10 +7910,10 @@
+@@ -7911,10 +7911,10 @@
  It also has features to delete, add, or edit meta-data keywords within one 
HDU.
  
  @menu
@@ -381,7 +381,7 @@
  @subsection Invoking Fits
  
  Fits can print or manipulate the FITS file HDUs (extensions), meta-data 
keywords in a given HDU.
-@@ -8000,7 +8000,7 @@
+@@ -8001,7 +8001,7 @@
  
  
  
@@ -390,16 +390,16 @@
  @subsubsection HDU manipulation
  Each header data unit, or HDU (also known as an extension), in a FITS file is 
an independent dataset (data + meta-data).
  Multiple HDUs can be stored in one FITS file, see @ref{Fits}.
-@@ -8024,7 +8024,7 @@
+@@ -8025,7 +8025,7 @@
  It is thus useful in scripts, for example when you need to do check the 
number of extensions in a FITS file.
  
  For a complete list of basic meta-data on the extensions in a FITS file, 
don't use any of the options in this section or in @ref{Keyword manipulation}.
 -For more, see @ref{Invoking astfits}.
 +For more, see @ref{astfits}.
  
- @item -C STR
- @itemx --copy=STR
-@@ -8060,7 +8060,7 @@
+ @item --datasum
+ @cindex @code{DATASUM}: FITS keyword
+@@ -8074,7 +8074,7 @@
  @end table
  
  
@@ -408,7 +408,7 @@
  @subsubsection Keyword manipulation
  The meta-data in each header data unit, or HDU (also known as extension, see 
@ref{Fits}) is stored as ``keyword''s.
  Each keyword consists of a name, value, unit, and comments.
-@@ -8424,10 +8424,10 @@
+@@ -8438,10 +8438,10 @@
  @end itemize
  
  @menu
@@ -421,7 +421,7 @@
  @subsection Invoking astscript-sort-by-night
  
  This installed script will read a FITS date formatted value from the given 
keyword, and classify the input FITS files into individual nights.
-@@ -8577,12 +8577,12 @@
+@@ -8591,12 +8591,12 @@
  The conversion is not only one way (from FITS to other formats), but two ways 
(except the EPS and PDF formats@footnote{Because EPS and PDF are vector, not 
raster/pixelated formats}).
  So you can also convert a JPEG image or text file into a FITS image.
  Basically, other than EPS/PDF, you can use any of the recognized formats as 
different color channel inputs to get any of the recognized outputs.
@@ -436,7 +436,7 @@
  @end menu
  
  @node Recognized file formats, Color, ConvertType, ConvertType
-@@ -8696,7 +8696,7 @@
+@@ -8710,7 +8710,7 @@
  As input, each plain text file is considered to contain one color channel.
  
  In ConvertType, the recognized extensions for plain text files are 
@file{.txt} and @file{.dat}.
@@ -445,7 +445,7 @@
  Besides these, when the format of a file cannot be recognized from its name, 
ConvertType will fall back to plain text mode.
  So you can use any name (even without an extension) for a plain text input or 
output.
  Just note that when the suffix is not recognized, automatic output will not 
be preformed.
-@@ -8717,7 +8717,7 @@
+@@ -8731,7 +8731,7 @@
  
  @end table
  
@@ -454,7 +454,7 @@
  @subsection Color
  
  @cindex RGB
-@@ -8741,7 +8741,7 @@
+@@ -8755,7 +8755,7 @@
  Therefore, the FITS format that is used to store astronomical datasets is 
inherently a mono-channel format (see @ref{Recognized file formats} or 
@ref{Fits}).
  
  When a subject has been imaged in multiple filters, you can feed each 
different filter into the red, green and blue channels and obtain a colored 
visualization.
@@ -463,7 +463,7 @@
  
  @cindex Grayscale
  @cindex Visualization
-@@ -8755,7 +8755,7 @@
+@@ -8769,7 +8769,7 @@
  This scheme is called grayscale.
  To help in visualization, more complex mappings can be defined.
  For example, the values can be scaled to a range of 0 to 360 and used as the 
``Hue'' term of the @url{https://en.wikipedia.org/wiki/HSL_and_HSV, 
Hue-Saturation-Value} (HSV) color space (while fixing the ``Saturation'' and 
``Value'' terms).
@@ -472,7 +472,7 @@
  
  Since grayscale is a commonly used mapping of single-valued datasets, we'll 
continue with a closer look at how it is stored.
  One way to represent a gray-scale image in different color spaces is to use 
the same proportions of the primary colors in each pixel.
-@@ -8785,7 +8785,7 @@
+@@ -8799,7 +8799,7 @@
  Therefore a Grayscale image and a CMYK image that has only the K-channel 
filled are approximately the same file size.
  
  
@@ -481,7 +481,7 @@
  @subsection Invoking ConvertType
  
  ConvertType will convert any recognized input file type to any specified 
output type.
-@@ -9064,14 +9064,14 @@
+@@ -9078,14 +9078,14 @@
  With Table, FITS tables (ASCII or binary) are directly accessible to the 
Unix-like operating systems power-users (those working the command-line or 
shell, see @ref{Command-line interface}).
  With Table, a FITS table (in binary or ASCII formats) is only one command 
away from AWK (or any other tool you want to use).
  Just like a plain text file that you read with the @command{cat} command.
@@ -499,7 +499,7 @@
  @subsection Column arithmetic
  
  After reading the requested columns from the input table, you can also do 
operations/arithmetic on the columns and save the resulting values as new 
column(s) in the output table (possibly in between other requested columns).
-@@ -9167,7 +9167,7 @@
+@@ -9251,7 +9251,7 @@
  @end table
  
  
@@ -508,16 +508,16 @@
  @subsection Invoking Table
  
  Table will read/write, select, convert, or show the information of the 
columns in FITS ASCII table, FITS binary table and plain text table files, see 
@ref{Tables}.
-@@ -9288,7 +9288,7 @@
+@@ -9389,7 +9389,7 @@
  This is good when you just want to select using one column's values, but 
don't need that column anymore afterwards.
  
  For one example of using this option, see the example under
 -@option{--sigclip-median} in @ref{Invoking aststatistics}.
 +@option{--sigclip-median} in @ref{aststatistics}.
  
- @item -e STR,INT/FLT,...
- @itemx --equal=STR,INT/FLT,...
-@@ -9402,14 +9402,14 @@
+ @item --inpolygon=STR1,STR2
+ Only return rows where the given coordinates are inside the polygon specified 
by the @option{--polygon} option.
+@@ -9540,14 +9540,14 @@
  Therefore in its WCS mode, Crop will stitch parts of the tiles that are 
relevant for a target (with the given width) from all the input images that 
cover that region into the output.
  Of course, the tiles have to be present in the list of input files.
  
@@ -534,7 +534,7 @@
  @end menu
  
  @node Crop modes, Crop section syntax, Crop, Crop
-@@ -9431,13 +9431,13 @@
+@@ -9569,13 +9569,13 @@
  All coordinates are read as floating point numbers (not integers, except for 
the @option{--section} option, see below).
  By setting the @emph{mode} in Crop, you define the standard that the given 
coordinates must be interpreted.
  Here, the different ways to specify the crop region are discussed within each 
standard.
@@ -550,16 +550,16 @@
  
  @table @asis
  @item Image coordinates
-@@ -9464,7 +9464,7 @@
+@@ -9602,7 +9602,7 @@
  Please see @ref{Crop section syntax} for a full description of this method.
  
- The latter option (@option{--polygon}) is a higher-level method to define any 
convex polygon (with any number of vertices) with floating point values.
+ The latter option (@option{--polygon}) is a higher-level method to define any 
polygon (with any number of vertices) with floating point values.
 -Please see the description of this option in @ref{Invoking astcrop} for its 
syntax.
 +Please see the description of this option in @ref{astcrop} for its syntax.
  @end table
  
  @item WCS coordinates
-@@ -9494,7 +9494,7 @@
+@@ -9632,7 +9632,7 @@
  
  @item Vertices of a single crop
  The @option{--polygon} option is a high-level method to define any convex 
polygon (with any number of vertices).
@@ -568,7 +568,7 @@
  @end table
  
  @cartouche
-@@ -9546,7 +9546,7 @@
+@@ -9686,7 +9686,7 @@
  See @ref{Command-line} for a description of how the command-line works.
  
  
@@ -577,7 +577,7 @@
  @subsection Blank pixels
  
  @cindex Blank pixel
-@@ -9571,7 +9571,7 @@
+@@ -9711,7 +9711,7 @@
  This can be turned off with the @option{--zeroisnotblank} option.
  
  
@@ -586,7 +586,7 @@
  @subsection Invoking Crop
  
  Crop will crop a region from an image.
-@@ -9635,7 +9635,7 @@
+@@ -9775,7 +9775,7 @@
  * Crop output::                 The outputs of Crop.
  @end menu
  
@@ -595,7 +595,7 @@
  @subsubsection Crop options
  
  The options can be classified into the following contexts: Input, Output and 
operating mode options.
-@@ -9838,7 +9838,7 @@
+@@ -10001,7 +10001,7 @@
  
  
  
@@ -604,7 +604,7 @@
  @subsubsection Crop output
  
  The string given to @option{--output} option will be interpreted depending
-@@ -9876,7 +9876,7 @@
+@@ -10039,7 +10039,7 @@
  The number of input images that were used to create that image.
  @item
  A @code{0} if the central few pixels (value to the @option{--checkcenter} 
option) are blank and @code{1} if they aren't.
@@ -613,7 +613,7 @@
  @end enumerate
  
  
-@@ -9904,13 +9904,13 @@
+@@ -10067,13 +10067,13 @@
  Later (once the images as warped into a single grid using Warp for example, 
see @ref{Warp}), the images are co-added (the output pixel grid is the average 
of the pixels of the individual input images).
  Arithmetic is Gnuastro's program for such operations on your datasets 
directly from the command-line.
  It currently uses the reverse polish or post-fix notation, see @ref{Reverse 
polish notation} and will work on the native data types of the input 
images/data to reduce CPU and RAM resources, see @ref{Numeric data types}.
@@ -629,7 +629,7 @@
  @end menu
  
  @node Reverse polish notation, Arithmetic operators, Arithmetic, Arithmetic
-@@ -9945,7 +9945,7 @@
+@@ -10108,7 +10108,7 @@
  @command{/} is a binary operator, so pull out the top two elements of the 
stack (top-most is @command{2}, then @command{11}) and divide the second one by 
the first.
  @end enumerate
  
@@ -638,7 +638,7 @@
  In Table's column arithmetic, they can be any column or a number (see 
@ref{Column arithmetic}).
  
  With this notation, very complicated procedures can be created without the 
need for parenthesis or worrying about precedence.
-@@ -9956,7 +9956,7 @@
+@@ -10119,7 +10119,7 @@
  
  
  
@@ -647,7 +647,7 @@
  @subsection Arithmetic operators
  
  The recognized operators in Arithmetic are listed below.
-@@ -10527,7 +10527,7 @@
+@@ -10713,7 +10713,7 @@
  @end cartouche
  
  
@@ -656,7 +656,7 @@
  @subsection Invoking Arithmetic
  
  Arithmetic will do pixel to pixel arithmetic operations on the individual 
pixels of input data and/or numbers.
-@@ -10722,7 +10722,7 @@
+@@ -10908,7 +10908,7 @@
  @cindex Average, weighted
  @cindex Kernel, convolution
  On an image, convolution can be thought of as a process to blur or remove the 
contrast in an image.
@@ -665,7 +665,7 @@
  
  There are generally two methods to convolve an image.
  The first and more intuitive one is in the ``spatial domain'' or using the 
actual image pixel values, see @ref{Spatial domain convolution}.
-@@ -10753,7 +10753,7 @@
+@@ -10939,7 +10939,7 @@
  * Frequency domain and Fourier operations::  Using frequencies in input.
  * Spatial vs. Frequency domain::  When to use which?
  * Convolution kernel::          How to specify the convolution kernel.
@@ -674,7 +674,7 @@
  @end menu
  
  @node Spatial domain convolution, Frequency domain and Fourier operations, 
Convolve, Convolve
-@@ -11497,7 +11497,7 @@
+@@ -11683,7 +11683,7 @@
  But when you have made the profiles in the image yourself, you can just make 
a larger input image and crop the central parts to completely remove the edge 
effect, see @ref{If convolving afterwards}.
  Also due to oversampling, both the kernels and the images can become very 
large and the speed boost of frequency domain convolution will significantly 
improve the processing time, see @ref{Oversampling}.
  
@@ -683,7 +683,7 @@
  @subsection Convolution kernel
  
  All the programs that need convolution will need to be given a convolution 
kernel file and extension.
-@@ -11515,7 +11515,7 @@
+@@ -11701,7 +11701,7 @@
  ConvertType: You can write your own desired kernel into a text file table and 
convert it to a FITS file with ConvertType, see @ref{ConvertType}.
  Just be careful that the kernel has to have an odd number of pixels along its 
two axes, see @ref{Convolution process}.
  All the programs that do convolution will normalize the kernel internally, so 
if you choose this option, you don't have to worry about normalizing the kernel.
@@ -692,7 +692,7 @@
  
  @end itemize
  
-@@ -11555,7 +11555,7 @@
+@@ -11741,7 +11741,7 @@
  @end table
  
  
@@ -701,7 +701,7 @@
  @subsection Invoking Convolve
  
  Convolve an input dataset (2D image or 1D spectrum for example) with a known 
kernel, or make the kernel necessary to match two PSFs.
-@@ -11765,7 +11765,7 @@
+@@ -11951,7 +11951,7 @@
  * Warping basics::              Basics of coordinate transformation.
  * Merging multiple warpings::   How to merge multiple matrices.
  * Resampling::                  Warping an image is re-sampling it.
@@ -710,7 +710,7 @@
  @end menu
  
  @node Warping basics, Merging multiple warpings, Warp, Warp
-@@ -11908,7 +11908,7 @@
+@@ -12094,7 +12094,7 @@
  
  
  
@@ -719,7 +719,7 @@
  @subsection Resampling
  
  @cindex Pixel
-@@ -11970,7 +11970,7 @@
+@@ -12156,7 +12156,7 @@
  Because of the PSF no astronomical target has a sharpchange in the signal so 
this issue is less important for astronomical applications, see @ref{PSF}.
  
  
@@ -728,7 +728,7 @@
  @subsection Invoking Warp
  
  Warp an input dataset into a new grid.
-@@ -12110,10 +12110,10 @@
+@@ -12296,10 +12296,10 @@
  See the explanation above for coordinates in the FITS standard to better 
understand this option and when it should be used.
  
  @item --hstartwcs=INT
@@ -741,7 +741,7 @@
  
  @item -k
  @itemx --keepwcs
-@@ -12182,7 +12182,7 @@
+@@ -12368,7 +12368,7 @@
  * Histogram and Cumulative Frequency Plot::  Basic definitions.
  * Sigma clipping::              Definition of @mymath{\sigma}-clipping.
  * Sky value::                   Definition and derivation of the Sky value.
@@ -750,7 +750,7 @@
  @end menu
  
  
-@@ -12196,7 +12196,7 @@
+@@ -12382,7 +12382,7 @@
  You can use it to get a general view of the distribution: which values have 
been repeated the most? how close/far are the most significant bins?  Are there 
more values in the larger part of the range of the dataset, or in the lower 
part?  Similarly, many very important properties about the dataset can be 
deduced from a visual inspection of the histogram.
  In the Statistics program, the histogram can be either output to a table to 
plot with your favorite plotting program@footnote{
  We recommend @url{http://pgfplots.sourceforge.net/,PGFPlots} which generates 
your plots directly within @TeX{} (the same tool that generates your 
document).},
@@ -759,7 +759,7 @@
  
  @cindex Intervals, histogram
  @cindex Bin width, histogram
-@@ -12217,7 +12217,7 @@
+@@ -12403,7 +12403,7 @@
  Unlike the histogram which has a limited number of bins, ideally the 
cumulative frequency plot should have one point for every data element.
  Even in small datasets (for example a @mymath{200\times200} image) this will 
result in an unreasonably large number of points to plot (40000)! As a result, 
for practical reasons, it is common to only store its value on a certain number 
of points (intervals) in the input range rather than the whole dataset, so you 
should determine the number of bins you want when asking for a cumulative 
frequency plot.
  In Gnuastro (and thus the Statistics program), the number reported for each 
bin is the total number of data points until the larger interval value for that 
bin.
@@ -768,7 +768,7 @@
  
  So as a summary, both the histogram and cumulative frequency plot in 
Statistics will work with bins.
  Within each bin/interval, the lower value is considered to be within then bin 
(it is inclusive), but its larger value is not (it is exclusive).
-@@ -12299,7 +12299,7 @@
+@@ -12485,7 +12485,7 @@
  
  
  
@@ -777,7 +777,7 @@
  @subsection Sky value
  
  @cindex Sky
-@@ -12522,7 +12522,7 @@
+@@ -12708,7 +12708,7 @@
  
  
  
@@ -786,7 +786,7 @@
  @subsection Invoking Statistics
  
  Statistics will print statistical measures of an input dataset (table column 
or image).
-@@ -13123,7 +13123,7 @@
+@@ -13309,7 +13309,7 @@
  Thanks to the published papers mentioned above, there is no need to provide a 
more complete introduction to NoiseChisel in this book.
  @c However, published papers cannot be updated any more, but the software has 
evolved/changed.
  @c The changes since publication are documented in @ref{NoiseChisel changes 
after publication}.
@@ -795,7 +795,7 @@
  
  As discussed above, detection is one of the most important steps for your 
scientific result.
  It is therefore very important to obtain a good understanding of NoiseChisel 
(and afterwards @ref{Segment} and @ref{MakeCatalog}).
-@@ -13135,16 +13135,16 @@
+@@ -13321,16 +13321,16 @@
  Defining colors is a very common process in most science-cases.
  Therefore it is also recommended to (patiently) complete that tutorial for 
optimal usage of NoiseChisel in conjunction with all the other Gnuastro 
programs.
  @ref{Detecting large extended targets} shows you can optimize NoiseChisel's 
settings for very extended objects to successfully carve out to signal-to-noise 
ratio levels of below 1/10.
@@ -816,7 +816,7 @@
  @c @subsection NoiseChisel changes after publication
  
  @c NoiseChisel was initially introduced in 
@url{https://arxiv.org/abs/1505.01664, Akhlaghi and Ichikawa [2015]} and 
updates after the first four years were published in 
@url{https://arxiv.org/abs/1909.11230, Akhlaghi [2019]}.
-@@ -13158,7 +13158,7 @@
+@@ -13344,7 +13344,7 @@
  
  
  
@@ -825,7 +825,7 @@
  @subsection Invoking NoiseChisel
  
  NoiseChisel will detect signal in noise producing a multi-extension dataset 
containing a binary detection map which is the same size as the input.
-@@ -13244,7 +13244,7 @@
+@@ -13430,7 +13430,7 @@
  * NoiseChisel output::          NoiseChisel's output options and format.
  @end menu
  
@@ -834,7 +834,7 @@
  @subsubsection NoiseChisel input
  
  The options here can be used to configure the inputs and output of 
NoiseChisel, along with some general processing options.
-@@ -13344,7 +13344,7 @@
+@@ -13530,7 +13530,7 @@
  The format is identical to that of the @option{--tilesize} option that is 
discussed in that section.
  @end table
  
@@ -843,7 +843,7 @@
  @subsubsection Detection options
  
  Detection is the process of separating the pixels in the image into two 
groups: 1) Signal, and 2) Noise.
-@@ -13613,7 +13613,7 @@
+@@ -13799,7 +13799,7 @@
  
  
  
@@ -852,7 +852,7 @@
  @subsubsection NoiseChisel output
  
  NoiseChisel's output is a multi-extension FITS file.
-@@ -13784,14 +13784,14 @@
+@@ -13970,14 +13970,14 @@
  For example Segment became a separate program (from NoiseChisel) in 2018 
(after those papers were published).
  Therefore this book is the definitive reference.
  @c To help in the transition from those papers to the software you are using, 
see @ref{Segment changes after publication}.
@@ -870,7 +870,7 @@
  @c @subsection Segment changes after publication
  
  @c Segment's main algorithm and working strategy were initially defined and 
introduced in Section 3.2 of @url{https://arxiv.org/abs/1505.01664, Akhlaghi 
and Ichikawa [2015]} and @url{https://arxiv.org/abs/1909.11230, Akhlaghi 
[2019]}.
-@@ -13803,7 +13803,7 @@
+@@ -13989,7 +13989,7 @@
  @c The aim of this section is to make the transition from the paper to your 
installed version, as smooth as possible through the list below.
  @c For a more detailed list of changes in previous Gnuastro 
releases/versions, please follow the @file{NEWS} file@footnote{The @file{NEWS} 
file is present in the released Gnuastro tarball, see @ref{Release tarball}.}.
  
@@ -879,7 +879,7 @@
  @subsection Invoking Segment
  
  Segment will identify substructure within the detected regions of an input 
image.
-@@ -13856,7 +13856,7 @@
+@@ -14042,7 +14042,7 @@
  * Segment output::              Outputs of Segment
  @end menu
  
@@ -888,7 +888,7 @@
  @subsubsection Segment input
  
  Besides the input dataset (for example astronomical image), Segment also 
needs to know the Sky standard deviation and the regions of the dataset that it 
should segment.
-@@ -13998,7 +13998,7 @@
+@@ -14184,7 +14184,7 @@
  @end table
  
  
@@ -897,7 +897,7 @@
  @subsubsection Segmentation options
  
  The options below can be used to configure every step of the segmentation 
process in the Segment program.
-@@ -14112,7 +14112,7 @@
+@@ -14298,7 +14298,7 @@
  
  @end table
  
@@ -906,7 +906,7 @@
  @subsubsection Segment output
  
  The main output of Segment are two label datasets (with integer types, 
separating the dataset's elements into different classes).
-@@ -14248,7 +14248,7 @@
+@@ -14434,7 +14434,7 @@
  Pixels with labels equal to, or smaller than, zero will be ignored by 
MakeCatalog.
  In other words, the number of rows in MakeCatalog's output is already known 
before running it (the maximum value of the labeled dataset).
  
@@ -915,7 +915,7 @@
  A very important factor in any measurement is understanding its validity 
range, or limits.
  Therefore in @ref{Quantifying measurement limits}, we'll discuss how to 
estimate the reliability of the detection and basic measurements.
  This section will continue with a derivation of elliptical parameters from 
the labeled datasets in @ref{Measuring elliptical parameters}.
-@@ -14259,7 +14259,7 @@
+@@ -14445,7 +14445,7 @@
  * Quantifying measurement limits::  For comparing different catalogs.
  * Measuring elliptical parameters::  Estimating elliptical parameters.
  * Adding new columns to MakeCatalog::  How to add new columns.
@@ -924,7 +924,7 @@
  @end menu
  
  @node Detection and catalog production, Quantifying measurement limits, 
MakeCatalog, MakeCatalog
-@@ -14581,7 +14581,7 @@
+@@ -14791,7 +14791,7 @@
  
  
  
@@ -933,7 +933,7 @@
  @subsection Adding new columns to MakeCatalog
  
  MakeCatalog is designed to allow easy addition of different measurements over 
a labeled image (see @url{https://arxiv.org/abs/1611.06387v1, Akhlaghi [2016]}).
-@@ -14597,7 +14597,7 @@
+@@ -14807,7 +14807,7 @@
  This will allow parallel processing and simplicity/clarity.
  So if your new calculation, needs new raw information from the pixels, then 
you will need to also modify the respective @code{mkcatalog_first_pass} and 
@code{mkcatalog_second_pass} functions (both in 
@file{bin/mkcatalog/mkcatalog.c}) and define new raw table columns in 
@file{main.h} (hopefully the comments in the code are clear enough).
  
@@ -942,7 +942,7 @@
  This allows a particular column/option to be easily found in all steps.
  Therefore in adding your new option, be sure to keep it in the same relative 
place in the list in all the separate places (it doesn't necessarily have to be 
in the end), and near conceptually similar options.
  
-@@ -14646,7 +14646,7 @@
+@@ -14856,7 +14856,7 @@
  
  
  
@@ -951,7 +951,7 @@
  @subsection Invoking MakeCatalog
  
  MakeCatalog will do measurements and produce a catalog from a labeled dataset 
and optional values dataset(s).
-@@ -14700,7 +14700,7 @@
+@@ -14910,7 +14910,7 @@
  * MakeCatalog output::          File names of MakeCatalog's output table.
  @end menu
  
@@ -960,7 +960,7 @@
  @subsubsection MakeCatalog inputs and basic settings
  
  MakeCatalog works by using a localized/labeled dataset (see 
@ref{MakeCatalog}).
-@@ -14754,7 +14754,7 @@
+@@ -14964,7 +14964,7 @@
  @end example
  
  To summarize: if the input file to MakeCatalog is the default/full output of 
Segment (see @ref{Segment output}) you don't have to worry about any of the 
@option{--*file} options below.
@@ -969,7 +969,7 @@
  To feed NoiseChisel's output into MakeCatalog, just change the labeled 
dataset's header (with @option{--hdu=DETECTIONS}).
  The full list of input dataset options and general setting options are 
described below.
  
-@@ -14824,7 +14824,7 @@
+@@ -15045,7 +15045,7 @@
  @end table
  
  
@@ -978,7 +978,7 @@
  @subsubsection Upper-limit settings
  
  The upper-limit magnitude was discussed in @ref{Quantifying measurement 
limits}.
-@@ -14911,7 +14911,7 @@
+@@ -15132,7 +15132,7 @@
  @end table
  
  
@@ -987,7 +987,7 @@
  @subsubsection MakeCatalog measurements
  
  The final group of options particular to MakeCatalog are those that specify 
which measurements/columns should be written into the final output table.
-@@ -15300,7 +15300,7 @@
+@@ -15538,7 +15538,7 @@
  
  
  
@@ -996,7 +996,7 @@
  @subsubsection MakeCatalog output
  After it has completed all the requested measurements (see @ref{MakeCatalog 
measurements}), MakeCatalog will store its measurements in table(s).
  If an output filename is given (see @option{--output} in @ref{Input output 
options}), the format of the table will be deduced from the name.
-@@ -15369,10 +15369,10 @@
+@@ -15611,10 +15611,10 @@
  The aperture can be a circle or an ellipse with any orientation.
  
  @menu
@@ -1009,7 +1009,7 @@
  @subsection Invoking Match
  
  When given two catalogs, Match finds the rows that are nearest to each other 
within an input aperture.
-@@ -15672,7 +15672,7 @@
+@@ -15914,7 +15914,7 @@
  * If convolving afterwards::    Considerations for convolving later.
  * Flux Brightness and magnitude::  About these measures of energy.
  * Profile magnitude::           Definition of total profile magnitude.
@@ -1018,7 +1018,7 @@
  @end menu
  
  
-@@ -15996,7 +15996,7 @@
+@@ -16238,7 +16238,7 @@
  
  After convolution, you can crop the outer @mymath{n} pixels with the section 
crop box specification of Crop: @option{--section=n:*-n,n:*-n} assuming your 
PSF is a square, see @ref{Crop section syntax}.
  This will also remove all discrete Fourier transform artifacts (blurred 
sides) from the final image.
@@ -1027,7 +1027,7 @@
  
  
  
-@@ -16047,7 +16047,7 @@
+@@ -16289,7 +16289,7 @@
  Hence the name, ``zero-point''.} magnitude.
  
  
@@ -1036,7 +1036,7 @@
  @subsection Profile magnitude
  
  @cindex Brightness
-@@ -16073,7 +16073,7 @@
+@@ -16315,7 +16315,7 @@
  
  
  
@@ -1045,7 +1045,7 @@
  @subsection Invoking MakeProfiles
  
  MakeProfiles will make any number of profiles specified in a catalog either 
individually or in one image.
-@@ -16158,7 +16158,7 @@
+@@ -16400,7 +16400,7 @@
  * MakeProfiles log file::       A description of the optional log file.
  @end menu
  
@@ -1054,7 +1054,7 @@
  @subsubsection MakeProfiles catalog
  The catalog containing information about each profile can be in the FITS 
ASCII, FITS binary, or plain text formats (see @ref{Tables}).
  The latter can also be provided using standard input (see @ref{Standard 
input}).
-@@ -16277,7 +16277,7 @@
+@@ -16519,7 +16519,7 @@
  
  @end table
  
@@ -1063,7 +1063,7 @@
  @subsubsection MakeProfiles profile settings
  
  The profile parameters that differ between each created profile are specified 
through the columns in the input catalog and described in @ref{MakeProfiles 
catalog}.
-@@ -16400,7 +16400,7 @@
+@@ -16642,7 +16642,7 @@
  
  @end table
  
@@ -1072,7 +1072,7 @@
  @subsubsection MakeProfiles output dataset
  MakeProfiles takes an input catalog uses basic properties that are defined 
there to build a dataset, for example a 2D image containing the profiles in the 
catalog.
  In @ref{MakeProfiles catalog} and @ref{MakeProfiles profile settings}, the 
catalog and profile settings were discussed.
-@@ -16571,7 +16571,7 @@
+@@ -16813,7 +16813,7 @@
  
  @end table
  
@@ -1081,7 +1081,7 @@
  @subsubsection MakeProfiles log file
  
  Besides the final merged dataset of all the profiles, or the individual 
datasets (see @ref{MakeProfiles output dataset}), if the @option{--log} option 
is called MakeProfiles will also create a log file in the current directory 
(where you run MockProfiles).
-@@ -16614,16 +16614,16 @@
+@@ -16856,16 +16856,16 @@
  @cindex Noise
  Real data are always buried in noise, therefore to finalize a simulation of 
real data (for example to test our observational algorithms) it is essential to 
add noise to the mock profiles created with MakeProfiles, see 
@ref{MakeProfiles}.
  Below, the general principles and concepts to help understand how noise is 
quantified is discussed.
@@ -1101,7 +1101,7 @@
  @subsection Noise basics
  
  @cindex Noise
-@@ -16822,7 +16822,7 @@
+@@ -17064,7 +17064,7 @@
  @end cartouche
  
  
@@ -1110,7 +1110,7 @@
  @subsection Invoking MakeNoise
  
  MakeNoise will add noise to an existing image.
-@@ -16923,7 +16923,7 @@
+@@ -17165,7 +17165,7 @@
  
  To derive higher-level information regarding our sources in extra-galactic 
astronomy, cosmological calculations are necessary.
  In Gnuastro, CosmicCalculator is in charge of such calculations.
@@ -1119,7 +1119,7 @@
  In @ref{Distance on a 2D curved space} the basic idea of understanding 
distances in a curved and expanding 2D universe (which we can visualize) are 
reviewed.
  Having solidified the concepts there, in @ref{Extending distance concepts to 
3D}, the formalism is extended to the 3D universe we are trying to study in our 
research.
  
-@@ -16933,7 +16933,7 @@
+@@ -17175,7 +17175,7 @@
  @menu
  * Distance on a 2D curved space::  Distances in 2D for simplicity
  * Extending distance concepts to 3D::  Going to 3D (our real universe).
@@ -1128,7 +1128,7 @@
  @end menu
  
  @node Distance on a 2D curved space, Extending distance concepts to 3D, 
CosmicCalculator, CosmicCalculator
-@@ -17081,7 +17081,7 @@
+@@ -17323,7 +17323,7 @@
  @dispmath{ds^2=c^2dt^2-a^2(t)ds_s^2 = c^2dt^2-a^2(t)(d\chi^2+r^2d\phi^2).}
  
  
@@ -1137,7 +1137,7 @@
  @subsection Extending distance concepts to 3D
  
  The concepts of @ref{Distance on a 2D curved space} are here extended to a 3D 
space that @emph{might} be curved.
-@@ -17130,7 +17130,7 @@
+@@ -17372,7 +17372,7 @@
  
  
  
@@ -1146,7 +1146,7 @@
  @subsection Invoking CosmicCalculator
  
  CosmicCalculator will calculate cosmological variables based on the input 
parameters.
-@@ -17180,7 +17180,7 @@
+@@ -17422,7 +17422,7 @@
  * CosmicCalculator specific calculations::  Requesting specific outputs.
  @end menu
  
@@ -1155,7 +1155,7 @@
  @subsubsection CosmicCalculator input options
  
  The inputs to CosmicCalculator can be specified with the following options:
-@@ -17333,9 +17333,9 @@
+@@ -17595,9 +17595,9 @@
  
  
  
@@ -1167,7 +1167,7 @@
  The full list of calculations can be useful when you don't want any specific 
value, but just a general view.
  In other contexts (for example in a batch script or during a discussion), you 
know exactly what you want and don't want to be distracted by all the extra 
information.
  
-@@ -17903,10 +17903,10 @@
+@@ -18166,10 +18166,10 @@
  @end cartouche
  
  @menu
@@ -1180,7 +1180,7 @@
  @subsection Invoking BuildProgram
  
  BuildProgram will compile and link a C source program with Gnuastro's library 
and all its dependencies, greatly facilitating the compilation and running of 
small programs that use Gnuastro's library.
-@@ -26134,7 +26134,7 @@
+@@ -26408,7 +26408,7 @@
  
  As you have already noticed for every program/library, it is very important
  that the basics of the science and technique be explained in separate
@@ -1189,7 +1189,7 @@
  writing a new program or your addition to an existing program involves a
  new concept, also include such subsections and explain the concepts so a
  person completely unfamiliar with the concepts can get a general initial
-@@ -26152,7 +26152,7 @@
+@@ -26426,7 +26426,7 @@
  relevant/interesting for the reader, there is no page number limit/cost.
  
  It might also help if you start discussing the usage of your idea in the
================================================================

---- gitweb:

http://git.pld-linux.org/gitweb.cgi/packages/gnuastro.git/commitdiff/84357a54c68f0db63bc1c9a4401c9efd466e498c


_______________________________________________
pld-cvs-commit mailing list
[email protected]
http://lists.pld-linux.org/mailman/listinfo/pld-cvs-commit

Reply via email to