Building PLPLOT with Visual Studio
Why can’t I just include all the code files in a project and press the build button?
PLplot makes every effort to be compatible with multiple different compilers on multiple OSs. It also uses third party libraries for backends/drivers. If every compiler exactly conformed to the (same) C++ and C standards and included nothing else and if every other library did the same then this would be easy. But they don’t and it isn’t. some libraries only work on Linux or Windows and different compilers add extra features and although often the same additional features exist in the different compilers they sometimes have different names or are in different header files. This all can make writing a cross platform library quite tricky.
PLplot addresses this by using a build system called CMAKE. This is an extra layer of code between the C/C++ code and the compiler. The CMAKE code is run before you try to build the library and it attempts to detect the various platform specific differences and create (in the case of Visual Studio) .sln and .proj files and a config.h file that fits your configuration.
A Walkthrough
I have spent a bit of time trying to get the CMAKE stuff to work with my setup. Fundamentally I want to end up with a visual studio sln file which I can use to build PLplot. Ideally it should include the examples and it should ensure I have access to the backends/drivers that I want to use which include wxWidgets, AGG and FreeType. It needs to allow me to specify all the project properties I need so that if I update my code to the latest trunk version (which I do quite often) I don’t have to manually change lots of settings. Unfortunately there is a bit of a Linux bias to CMAKE and/or the CMAKE code that has been written for PLplot so here are some things that may catch you out:
When specifying paths to CMAKE, capitalisation matters.
When CMAKE looks for additional libraries it sometimes only looks in the default Linux path so you might have to specify library locations
All the defaults are to build dynamically linked dynamic libraries – if you want anything else then you must specify so.
If you need to recreate your sln files then it’s best to delete everything in your build directory and start again from scratch.
Anyhow here is a walkthrough of how I got everything working.
Backends/Drivers
I use wxWidgets, AGG and Freetype backends. If you want to use them then you should download the source code and compile them. Don’t be tempted to download precompiled .lib and .dll files. If you do then they may not have been compiled with the same setting that you use and may generate hard to fix linker errors. Problem setting can include character set (Unicode, vs multibyte vs not set) and run-time libraries static/dynamic linking (multithreaded, multithreaded dll, multithreaded debug, multithreaded debug dll). If you don’t know what static and dynamic linking are then find out because it will be the bane of your programming life if you don’t. I tend to add u to the end of a library name to indicate Unicode and s to indicate static (not dll) linkage to the runtime library and d to indicate debug.
I keep all my library source code in a folder called D:\SourceCode\Libraries. When I download a new library source code I unzip the source to a new subdirectory here and work from there.
wxWidgets
I use wxWidgets for GUI output. If you wish to do the same then the best way is to install wxPack which is a fully working version of wxWidgets for Windows. It comes with a Visual Studio .sln file so saves you a lot of hassle. I wanted to make use of the wxGraphicsContext (which gives antialiased output of PLplot) and wxPostscriptDC. To do this, go through all the various setup.h and setup0.h and set
 #define wxUSE_GRAPHICS_CONTEXT 1
 #define wxUSE_POSTSCRIPT 1
Open the wxWidgets .sln file and if you wish to change between static and dynamic linking then do so.
Finally go to build, batch build and build all the versions of the library.
AGG and FreeType
If you are using AGG and/or FreeType then download the code for these projects. Both are quite straightforward. AGG seem to pride themselves on only using ‘pure’ C so for AGG you can just add all the files to a visual studio project and build it.
If you are using FreeType then this includes a .sln file to build with Visual Studio.
If using both FreeType and AGG then you should copy the files from your_agg_directory\font_freetype to your_agg_directory\include\agg2. You may wish to do the same with those in font_win32_tt, but it’s not needed for PLplot at present.
Also don’t forget to ensure your character set and run time library linkage are set as you want them.
PLplot
Finally we get to PLplot – well nearly. You will need some extra tools first. Download and install CMAKE. Next if you want to use the very latest bug fixes you will need to access the Subversion repository. To do this download tortoiseSVN. If you have any doubt about whether you want the latest (trunk) version or the latest stable release then my recommendation would be the trunk version. A number of bugs have been fixed in this version, especially relating to wxWidgets AGG and FreeType and there are some additional features too.
You need to put the PLplot source code in a directory. Mine is in D:\SourceCode\Libraries\plplot trunk. Put yours wherever you want by using either TortoiseSVN or by unzipping it.
Open a cmd window and navigate to C:\Program files\Microsoft Visual Studio 9.0\Common7\Tools and run vsvars32.bat. This will define variables that CMAKE will use so keep this cmd prompt open.
Rather than compile PLplot ‘in place’ we’ll be building it in a separate directory, in fact we need two directories, one for release and one for debug. So create a these build directories. Mine are at D:\Sourcecode\Libraries\plplot_staticbuild_release, with another in the same location but ending debug. If you are not linking against AGG or FreeType then you can build both release and debug versions in one solution so only need one directory (see DCMAKE_CONFIGURATION_TYPES below). In your cmd prompt navigate to the release directory.
If you wish to add any extra compiler flags do so by setting the environment variables CXXFLAGS and CFLAGS in your cmd prompt. I use this facility to set the Unicode options
set CXXFLAGS=/DUNICODE /D_UNICODE
set CFLAGS=/DUNICODE /D_UNICODE
Note that you almost always want CXXFLAGS and CFLAGS to be identical
Now call CMAKE. The code I use to do this is
D:\SourceCode\Libraries\plplot_staticbuild_release>cmake "D:/SourceCode/Libraries/plplot trunk" -G "Visual Studio 9 2008" -DPL_DOUBLE=ON -DLIB_TAG="su" -DBUILD_TEST=ON -DCMAKE_INSTALL_PREFIX="D:\SourceCode\Libraries\plplotinstall" -DENABLE_wxwidgets=ON -DHAVE_AGG=ON -DAGG_INCLUDE_DIR="D:/SourceCode/Libraries/agg-2.4/include" -DAGG_LIBRARIES="D:/SourceCode/Libraries/agg-2.4/VC++/AGG/lib/AGGs.lib" -DWITH_FREETYPE=ON -DFREETYPE_INCLUDE_DIR="D:/SourceCode/Libraries/freetype-2.4.8/include" -DFREETYPE_LIBRARY="D:/SourceCode/Libraries/freetype-2.4.8/objs/win32/vc2008/freetypes.lib" -DHAVE_SHAPELIB=ON -DSHAPELIB_INCLUDE_DIR="D:/SourceCode/Libraries/shapelib-1.3.0/include/shapelib" –DSHAPELIB_LIBRARY="D:/SourceCode/Libraries/shapelib-1.3.0/lib/shapelibs.lib" -DBUILD_SHARED_LIBS=OFF -DCMAKE_CONFIGURATION_TYPES="Release" -DSTATIC_RUNTIME=ON
I’ll go through each part in turn
cmake: The program we are running
“D:/SourceCode/Libraries/plplot trunk”: the path to my source directory – case sensitive.
-G “Visual Studio 9 2008”: the compiler I want to generate a project/solution for.
-DPL_DOUBLE=ON: use doubles, rather than floats in PLplot.
-DLIB_TAG=”su”: this will append “su” to the end of the library name and is an indicator to me that I’m using static linkage with the Unicode character set.
-DBUILD_TEST=ON: Indicates I want to create projects for the examples. Set to OFF to not build them.
-DCMAKE_INSTALL_PREFIX=”D:\SourceCode\Libraries\plplotinstall” The directory you want your final libraries to end up in, it will be created if it doesn’t exist.
-DENABLE_wxwidgets=ON Enable wxWidgets.
Anything with AGG in: These point out that I want to use AGG and specifies the location of header files and the library itself. The library is only needed if –DBUILD_TEST is ON. Neither are needed if you are not using AGG.
Anything with FREETYPE in: As with the AGG stuff it indicates I want to use FreeType and gives the location of the headers and library. Note that the variables have slightly different names to the AGG ones. Again the library is only needed when building the examples.
-DBUILD_SHARED_LIBS=OFF Build a .lib rather than a .dll
-DCMAKE_CONFIGURATION_TYPES=”Release”: The configuration to use in the project. You can run create multiple configurations in one solution by listing them separated by semicolons, but if using FreeType or AGG this causes linking problems with the examples as you can’t specify linkage against the release and debug versions separated by semicolons. You can include Release, Debug, MinSizeRel and RelWithDebInfo.
-DSTATIC_RUNTIME=ON: This causes us to link against the static runtime (equivalent to /MT or /MTd flags). Set it to OFF if you want to link against the dynamic runtime (equivalent to /MD or /MDd). This option is only available in the Trunk version as of 1st August 2012.
All the options above except the source directory and compiler are optional and will be set to default values if excluded. There are also other customisable options and after you’ve run CMAKE you can examine the CMakeCache.txt file that is created in your build directory to see others (prepend –D to define them on the command line) or look at the wiki page or CMAKE documentation.
Hopefully after a minute or two the screen output should end with
--Configuring done
--Generating done
--Build files have been written to D:/SourceCode/Libraries/plplot_staticbuild_release
If you now go to your build directory you should see a solution which you can open in Visual Studio.
Before you build there are still a couple of things you might need to do:
 If you set Unicode and built with wxWidgets and built the examples then you will need to go through each example project (the ones beginning x) and change references to wxbase28.lib and wxmsw28_core.lib to wxbase28u.lib and wxmsw28u_core.lib
If you want to build using static linkage then you will need to change this manually for the examples, plplot, plplotcxx,plplotwxwidgets (if it exists), qsatime and csirocsa. However I have submitted a patch to enable this using the –DSTATIC_RUNTIME=ON flag to CMAKE. I’ll edit this page if it is accepted.
Now, rather than just building the solution you should find the install project, right click it and select build. This will build all the needed projects and copy the resulting libraries to the install directory you specified to CMAKE. Note if you left this option out when using CMAKE then it defaults to C:\Program Files\plplot. If you have UAC on in Vista or later then Visual Studio won’t be able to create this directory without being run as administrator.
You might notice that you can’t specify a different AGG or FreeType library or a different TAG for release or debug builds. Unfortunately that’s a limit of the PLplot CMAKE code. My recommendation would be to create two build folders, one for release and one for debug builds (you can’t reuse the same folder as files get overwritten). If you want dynamic libraries too then you’ll want directories for these. Providing each library has a different tag you can have them installed in the same place. The exception to this is the csirocsa and qsatime libs. You will have to manually change the name of these libraries after they have been created so they don’t get overwritten by other versions.

