That looks right, to me. Note that you can test this if you replace := with -:
For example: x=: 1 y=: 2 a=:B=:c=:D=:e=:F=: <@,&< Thanks, -- Raul On Sun, Jul 21, 2013 at 7:53 PM, Tobia Conforto <[email protected]> wrote: > Hello > > I'm trying to understand trains of verbs and I came up with this. Can anybody > please either confirm it or correct me? > > Monadic trains: > > (B a) y := y B (a y) > (c B a) y := (c y) B (a y) > (D c B a) y := y D (c y) B (a y) > (e D c B a) y := (e y) D (c y) B (a y) > (F e D c B a) y := y F (e y) D (c y) B (a y) > > Dyadic trains: > > x (B a) y := x B ( a y) > x (c B a) y := (x c y) B (x a y) > x (D c B a) y := x D ( c y) B ( a y) > x (e D c B a) y := (x e y) D (x c y) B (x a y) > x (F e D c B a) y := x F ( e y) D ( c y) B ( a y) > > Capped fork in even-numbered dyadic train: > > x (F e D c B a) y := x F (e y) D (c y) B (a y) > x (F e D [: B a) y := x F (e y) D B (a y) > x (F [: D c B a) y := x F D (c y) B (a y) > x (F [: D [: B a) y := x F D B (a y) > > Capped fork in odd-numbered dyadic train: > > x (e D c B a) y := (x e y) D (x c y) B (x a y) > x (e D [: B a) y := (x e y) D B (x a y) > x ([: D c B a) y := D (x c y) B (x a y) > x ([: D [: B a) y := D B (x a y) > > > -Tobia > ---------------------------------------------------------------------- > For information about J forums see http://www.jsoftware.com/forums.htm ---------------------------------------------------------------------- For information about J forums see http://www.jsoftware.com/forums.htm
