I don't know how the semicolons are placed, but this code formats Raul's
output to give the shape you showed with only commas.

   comb =. ,.(</.~ {.@{.@>) (</.~ /:~"1)1+5 5 5 #: i. 5^3
   comb =. ((,~ #&(<,:4#' '))&.> i.@#) (',',.~{.@":"0)L:0 comb
   ; ,&LF&.> <@({.~i:&',')"1 ; ,.&:>/@:({.&.>~ [:>./#@>)&.> comb
111,112,113,114,115,122,123,124,125,133,134,135,144,145,155
    121,131,141,151,212,132,142,152,313,143,153,414,154,515
    211,311,411,511,221,213,214,215,331,314,315,441,415,551
                        231,241,251,    341,351,    451
                        312,412,512,    413,513,    514
                        321,421,521,    431,531,    541
    222,223,224,225,233,234,235,244,245,255
        232,242,252,323,243,253,424,254,525
        322,422,522,332,324,325,442,425,552
                        342,352,    452
                        423,523,    524
                        432,532,    542
        333,334,335,344,345,355
            343,353,434,354,535
            433,533,443,435,553
                        453
                        534
                        543
            444,445,455
                454,545
                544,554
                555

Marshall

On Thu, Aug 08, 2013 at 03:34:32PM -0400, Raul Miller wrote:
> If I ignore formatting issues, this gives the basic structure:
> 
>    ,.(</.~ {.@{.@>) (</.~ /:~"1)1+5 5 5 #: i. 5^3
> 
> FYI,
> 
> -- 
> Raul
> 
> On Thu, Aug 8, 2013 at 3:29 PM, Atto Ampere <[email protected]> wrote:
> > I came across this chart in an 200 year old publication..
> > and was wasting my time figuring out by hand the laws by which it is
> > governed just because i couldn't use J, which seems a perfect fit for
> > it!
> >
> >
> >
> > 111,112,113,114,115;122,123,124,125;133,134,135;144,145;155
> >     121,131,141,151;212,132,142,152;313,143,153;414,154;515
> >     211,311,411,511;221,213,214,215;331,314,315;441,415;551
> >                         231,241,251;    341,351;    451;
> >                         312,412,512;    413,513;    514;
> >                         321,421,521;    431,531;    541;
> >     222,223,224,225;233,234,235;244,245;255
> >         232,242,252;323,243,253;424,254;525
> >         322,422,522;332,324,325;442,425;552
> >                         342,352;    452;
> >                         423,523;    524;
> >                         432,532;    542;
> >         333,334,335;344,345;355
> >             343,353;434,354;535
> >             433,533;443,435;553
> >                         453;
> >                         534;
> >                         543;
> >             444,445;455
> >                 454;545
> >                 544;554
> >                 555;
> >
> > it's just the combinations with repetitions of 3 out of 5 elements in
> > lexicographic order, with the permutations written below the cases.
> >
> >
> > 1 3 3 3 3 3 3|3 6 6 6 6 6 3 6 6 6 6 3 6 6 6 3 6 6 3 6 3   ... 7 [28]
> > (3 out of 7 elements)
> >                                                                 7
> >   1 3 3 3 3 3|3 6 6 6 6 3 6 6 6 3 6 6 3 6 3       ... 6         [21]
> > (3 out of 6 elements)
> >                                                                 6
> >     1 3 3 3 3|3 6 6 6 3 6 6 3 6 3   Multinomial coefficient 5   [15] (3
> > out of 5 elements)
> >                                                                 5
> >       1 3 3 3|3 6 6 3 6 3 follows Pascal Simplex                [10] (3 out
> > of 4 elements)
> >                                                                 4
> >         1 3 3|3 6 3 follows Pascal's Tetrahedron(last row excl.)[6]
> > (3 out of 3 elements)
> >                                                                 3
> >           1 3|3 follows Pascal's Triangle                       [3]  (3 out 
> > of 2 elements)
> >                                                                 2
> >             1                                                   [1]  (3
> > out of 1 element)
> >
> >
> > number of combinations beginning with the 1st element - triangular numbers
> > picking 4 elements with repetition would be governed by tetrahedral numbers
> > and so on
> >
> > HOW COULD ONE GENERATE ALL THIS IN J??
> > thanks in advance
> >  atto
> >
> >
> >
> > Lexicographic Multiset Permutation Generation including Ranking etc.
> > A New Method for Generating Permutations in Lexicographic Order
> > http://203.72.2.115/Ejournal/AL03050402.pdf
> > From Permutations to Iterative Permutations
> > http://www.ijcset.net/docs/Volumes/volume2issue7/ijcset2012020702.pdf
> > ----------------------------------------------------------------------
> > For information about J forums see http://www.jsoftware.com/forums.htm
> ----------------------------------------------------------------------
> For information about J forums see http://www.jsoftware.com/forums.htm
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to