Verb LU below produces the matrices L and U of the LU decomposition of a square matrix A. L is lower triangular, U is upper triangular, and A is L +/ . * U .
Should one attempt a tacit version? eye =: =@i.@] NB. eye 3 is a 3 by 3 identity matrix rop =: 3 : 0 NB. row op: subtract c times row i0 from row i1 : 'i1 c i0' =. x ( (i1 { y) - c * i0 { y ) i1 } y ) LU =: 3 : 0 NB. square matrices L and U for y -: L +/ . * U m =. # y L =. eye(m) U =. y for_j. i. <: m do. p =. (< j , j) { U for_i. j + >: i. <: m - j do. c =. p %~ (< i , j) { U L =. c (< i , j) } L U =. (i, c, j) rop U end. end. L ,: U ) saveAA 2 1 4 _4 _1 _11 2 4 _2 LU saveAA 1 0 0 _2 1 0 1 3 1 2 1 4 0 1 _3 0 0 3 saveAA -: +/ . */ LU saveAA 1 --Kip Murray Sent from my iPad ---------------------------------------------------------------------- For information about J forums see http://www.jsoftware.com/forums.htm