In this instance Newton's method gives the same results as the following ( http://www.jsoftware.com/jwiki/Essays/Fibonacci%20Sequence#Matrix_power):
M=: 0 1,:1 1x +/ .*~^:5 M 1346269 2178309 2178309 3524578 % %/ {: +/ .*~^:5 M 3524578r2178309 (1 + ] - *:) N^:5 ] 1 3524578r2178309 f=: 3 : '(% %/ {: +/ .*~^:y M) = (1 + ] - *:) N^:y 1' f"0 i.15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Basically, 2^n digits with n iterations. On Mon, Feb 24, 2014 at 5:08 AM, Nimp O <tr...@outlook.com> wrote: > Another nice way to get a lot of digits from the golden ratio is using > Newton's Method. > > In : http://www.jsoftware.com/jwiki/Essays/Newton%27s%20Method > N=: 1 : '- u % u d. 1' > > correct50 =: '1.61803398874989484820458683436563811772030917980576' > 0j50 ": (1 + ] - *:) N^:7 ] 1 > 1.61803398874989484820458683436563811772030917980576 > correct50 -: 0j50 ": (1 + ] - *:) N^:7 ] 1 > 1 > > > # correct1000 =: > '1.6180339887498948482045868343656381177203091798057628621354486227...' > 1002 > > correct1000 -: 0j1000 ": (1 + ] - *:) N^:12 ] 1 > 1 > You can get 50 correct digits in 7 iterations and 1000 digits in 12! > > > > > > > Here are the first 100 digits using this J function: > > > > 0j101 ":B > > > 1.61803398874989484820458683436563811772030917980576286213544862270526046281 > > 890244970720720418939113748 > > > > Linda > > > ---------------------------------------------------------------------- > For information about J forums see http://www.jsoftware.com/forums.htm > ---------------------------------------------------------------------- For information about J forums see http://www.jsoftware.com/forums.htm