Yes, that works for non-integer arguments -- provided that the standard series 
for zeta converges there. Elsewhere, analytic continuation (that can be 
provided by explicit formulas) is required.

Look at, the apparently wildly oscillating values:

        0.5j1 zeta 1e5
   _157.17j234.337
        0.5j1 zeta 1e6
    885.57j_127.297
        0.5j1 zeta 1e7
  _2168.58j_1816.38

In actuality, zeta of 0.5j1 should be (to 16 digits):

   0.1439364270771891j-0.7220997435316731


On 9 Mar 2014 12:25:42 -0600, Dan Abell <[email protected]> wrote:

> so
> 
>    zeta =: [:+/(%@^~>:@i.)
> 
> then
> 
>   2 zeta 2e5
> 1.64493
>   3 zeta 1e5
> 1.20206
> 
> this also works for non-integer arguments:
> 
>   3.5 zeta 1e5
> 1.12673
>   3.5j0.5 zeta 1e5
> 1.11256j_0.053509
> 
> Cheers,
>       -Dan
> 
> On 9 Mar 2014, at 11:54, Aai wrote:
> 
>> in fact something like:
>> 
>>  2 +/@:(%@^~) 1+i.100000
>> 1.64492

——
Murray Eisenberg                                [email protected]
Mathematics & Statistics Dept.       
Lederle Graduate Research Tower      phone 240 246-7240 (H)
University of Massachusetts                
710 North Pleasant Street                 
Amherst, MA 01003-9305






----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to