Nice.

On Tue, Jun 10, 2014 at 6:09 PM, Henry Rich <[email protected]> wrote:

> Better implementation:
>
>
>    sdiv5 =: (*//.~ (* %&<: ]) ~.)&.q:
>    sdiv7 =: >:@(#. {.)/.~&.q:
>    (sdiv5 -: sdiv7) !20x
> 1
>
>
>
> On 6/10/2014 8:56 PM, Henry Rich wrote:
>
>> Back to adding powers then:
>>
>>     sdiv5 =: (*//.~ (* %&<: ]) ~.)&.q:
>>     sdiv6 =: (#. %~)@(,{.)/.~&.q:
>>     (sdiv5 -: sdiv6) !20x
>> 1
>>
>> Henry Rich
>>
>> On 6/10/2014 8:08 PM, Roger Hui wrote:
>>
>>> Since */ and q: are an inverse pair,
>>>
>>> sdiv4 =: (*//.~ (* */@:%&:<: ]) ~.)@q:
>>> sdiv5 =: (*//.~ (* %&<: ]) ~.)&.q:
>>>
>>>     (sdiv -: sdiv5) !20x
>>> 1
>>>
>>>
>>>
>>>
>>>
>>> On Tue, Jun 10, 2014 at 3:33 PM, Roger Hui <[email protected]>
>>> wrote:
>>>
>>>  sdiv  =: */ @: (((^>:) %&<: [)/) @: (__&q:)
>>>> sdiv1 =: */ @ (%~/) @: <: @ ((^>:)/\) @ (__&q:)
>>>> sdiv2 =: (((^>:) */@:%&:<: [)/) @: (__&q:)
>>>> sdiv3 =: __ ((^>:) */@:%&:<: [)/@q: ]
>>>> sdiv4 =: (*//.~ (* */@:%&:<: ]) ~.)@q:
>>>>
>>>>     (sdiv -: sdiv1) !20x
>>>> 1
>>>>     (sdiv -: sdiv2) !20x
>>>> 1
>>>>     (sdiv -: sdiv3) !20x
>>>> 1
>>>>     (sdiv -: sdiv4) !20x
>>>> 1
>>>>
>>>>
>>>>
>>>>
>>>> On Tue, Jun 10, 2014 at 1:54 PM, Henry Rich <[email protected]>
>>>> wrote:
>>>>
>>>>  Shorter version:
>>>>>
>>>>> sdiv =. */@(%~/)@:<:@((^ >:)/\)@(__&q:)
>>>>>
>>>>> spdiv =. (-~ sdiv)
>>>>>      spdiv 12
>>>>> 16
>>>>>
>>>>> Henry Rich
>>>>> On 6/10/2014 3:09 PM, Henry Rich wrote:
>>>>>
>>>>>  NB. sum of divisors
>>>>>> sdiv =. (*/) @: (((^ >:) %&<: [)/) @: (__&q:)
>>>>>> NB. sum of proper divisors
>>>>>> spdiv =. (-~ sdiv)
>>>>>>      spdiv 12
>>>>>> 16
>>>>>>
>>>>>> Henry Rich
>>>>>>
>>>>>> On 6/10/2014 1:18 PM, Roger Hui wrote:
>>>>>>
>>>>>>   From http://www.jsoftware.com/jwiki/Essays/Divisors
>>>>>>>
>>>>>>>>
>>>>>>>>
>>>>>>>      div=: /:~ @: , @: > @: (*/&.>/) @: ((^ i.@>:)&.>/) @: (__&q:)
>>>>>>>      div 360
>>>>>>> 1 2 3 4 5 6 8 9 10 12 15 18 20 24 30 36 40 45 60 72 90 120 180 360
>>>>>>>
>>>>>>>
>>>>>>>
>>>>>>>
>>>>>>>
>>>>>>> On Tue, Jun 10, 2014 at 10:10 AM, Jon Hough <[email protected]>
>>>>>>> wrote:
>>>>>>>
>>>>>>>   My attempt at making a verb that finds the total of all proper
>>>>>>>
>>>>>>>> divisors of
>>>>>>>> an integer seems to work.
>>>>>>>> e.g. if n = 12, the sum of proper divisors is 1 +2 +3+4+6 = 16 (note
>>>>>>>> 12 is
>>>>>>>> not included)
>>>>>>>> This verb is actually equal to the "sigma function" minus
>>>>>>>> n.Wikipedia
>>>>>>>> explanation: http://en.wikipedia.org/wiki/Divisor_function
>>>>>>>> (I essentially used the equation for sigma_x(n) where x = 1)
>>>>>>>> my verb:
>>>>>>>>
>>>>>>>> sum =.(((*/@:-&1@:{.)%~(*/@:-&1@:({.^(1&+@:,@:}.))))@:(2&p:))-]
>>>>>>>> This seems ok, but is not aesthetically pleasing, and seems to be
>>>>>>>> very
>>>>>>>> bracketty, and given that the mathematical equation is pretty
>>>>>>>> concise
>>>>>>>> I am
>>>>>>>> surprised the J verb is so long. If anyone knows a nicer way of
>>>>>>>> doing
>>>>>>>> this
>>>>>>>> I would be grateful to see it.
>>>>>>>> Regards.
>>>>>>>> ------------------------------------------------------------
>>>>>>>> ----------
>>>>>>>>
>>>>>>>> For information about J forums see
>>>>>>>> http://www.jsoftware.com/forums.htm
>>>>>>>>
>>>>>>>>   ------------------------------------------------------------
>>>>>>>>
>>>>>>> ----------
>>>>>>> For information about J forums see
>>>>>>> http://www.jsoftware.com/forums.htm
>>>>>>>
>>>>>>>
>>>>>>> ------------------------------------------------------------
>>>>>>> ----------
>>>>>>>
>>>>>>>  For information about J forums see http://www.jsoftware.com/
>>>>>> forums.htm
>>>>>>
>>>>>>
>>>>>> ------------------------------------------------------------
>>>>>> ----------
>>>>>>
>>>>> For information about J forums see http://www.jsoftware.com/forums.htm
>>>>>
>>>>>
>>>>
>>>>  ----------------------------------------------------------------------
>>> For information about J forums see http://www.jsoftware.com/forums.htm
>>>
>>>  ----------------------------------------------------------------------
>> For information about J forums see http://www.jsoftware.com/forums.htm
>>
>>  ----------------------------------------------------------------------
> For information about J forums see http://www.jsoftware.com/forums.htm
>
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to