It should be possible to write a recursive matrix-oriented
orthogonalization.  See
http://www.jsoftware.com/jwiki/Essays/QR_Decomposition .

On Mon, Sep 15, 2014 at 11:56 PM, 'Bo Jacoby' via Programming <
[email protected]> wrote:

> I managed to ortogonalize a 10 10 - matrix like this:
>
>    f=.[:(%+./)(]*[:+/[*[)-[*[:+/*
>    orto =. 3 : 0
> a=.,:{.y
> a=.a,{.y=.({:a)f"1}.y
> a=.a,{.y=.({:a)f"1}.y
> a=.a,{.y=.({:a)f"1}.y
> a=.a,{.y=.({:a)f"1}.y
> a=.a,{.y=.({:a)f"1}.y
> a=.a,{.y=.({:a)f"1}.y
> a=.a,{.y=.({:a)f"1}.y
> a=.a,{.y=.({:a)f"1}.y
> a=.a,{.y=.({:a)f"1}.y
> )
>    orto(!/~)i.10
>   1   1   1   1    1   1   1   1   1  1
>  _9  _7  _5  _3   _1   1   3   5   7  9
>   6   2  _1  _3   _4  _4  _3  _1   2  6
> _42  14  35  31   12 _12 _31 _35 _14 42
>  18 _22 _17   3   18  18   3 _17 _22 18
>  _6  14  _1 _11   _6   6  11   1 _14  6
>   3 _11  10   6   _8  _8   6  10 _11  3
>  _9  47 _86  42   56 _56 _42  86 _47  9
>   1  _7  20 _28   14  14 _28  20  _7  1
>  _1   9 _36  84 _126 126 _84  36  _9  1
>
>
> How can the program orto be made less embarrassing?
>
> Thank you!
>
>
> Bo.
> ----------------------------------------------------------------------
> For information about J forums see http://www.jsoftware.com/forums.htm
>
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to